No Arabic abstract
Entanglement has long stood as one of the characteristic features of quantum mechanics, yet recent developments have emphasized the importance of quantumness beyond entanglement for quantum foundations and technologies. We demonstrate that entanglement cannot entirely capture the worst-case sensitivity in quantum interferometry, when quantum probes are used to estimate the phase imprinted by a Hamiltonian, with fixed energy levels but variable eigenbasis, acting on one arm of an interferometer. This is shown by defining a bipartite entanglement monotone tailored to this interferometric setting and proving that it never exceeds the so-called interferometric power, a quantity which relies on more general quantum correlations beyond entanglement and captures the relevant resource. We then prove that the interferometric power can never increase when local commutativity-preserving operations are applied to qubit probes, an important step to validate such a quantity as a genuine quantum correlations monotone. These findings are accompanied by a room-temperature nuclear magnetic resonance experimental investigation, in which two-qubit states with extremal (maximal and minimal) interferometric power at fixed entanglement are produced and characterized.
It seems natural to ask why the universe exists at all. Modern physics suggests that the universe can exist all by itself as a self-contained system, without anything external to create or sustain it. But there might not be an absolute answer to why it exists. I argue that any attempt to account for the existence of something rather than nothing must ultimately bottom out in a set of brute facts; the universe simply is, without ultimate cause or explanation.
We introduce an infinite family of quantifiers of quantum correlations beyond entanglement which vanish on both classical-quantum and quantum-classical states and are in one-to-one correspondence with the metric-adjusted skew informations. The `quantum $f-$correlations are defined as the maximum metric-adjusted $f-$correlations between pairs of local observables with the same fixed equispaced spectrum. We show that these quantifiers are entanglement monotones when restricted to pure states of qubit-qudit systems. We also evaluate the quantum $f-$correlations in closed form for two-qubit systems and discuss their behaviour under local commutativity preserving channels. We finally provide a physical interpretation for the quantifier corresponding to the average of the Wigner-Yanase-Dyson skew informations.
The original intensity interferometers were instruments built in the 1950s and 60s by Hanbury Brown and collaborators, achieving milli-arcsec resolutions in visible light without optical-quality mirrors. They exploited a then-novel physical effect, now known as HBT correlation after the experiments of Hanbury Brown and Twiss, and nowadays considered fundamental in quantum optics. Now a new generation of inten- sity interferometers is being designed, raising the possibility of measuring intensity correlations with three or more detectors. Quantum optics predicts some interesting features in higher-order HBT. One is that HBT correlation increases combinatorially with the number of detectors. Signal to noise considerations suggest, that many-detector HBT correlations would be mea- surable for bright masers, but very difficult for thermal sources. But the more modest three-detector HBT correlation seems measurable for bright stars, and would provide image information (namely the bispectrum) not present in standard HBT.
A clock is, from an information-theoretic perspective, a system that emits information about time. One may therefore ask whether the theory of information imposes any constraints on the maximum precision of clocks. Here we show a quantum-over-classical advantage for clocks or, more precisely, the task of generating information about what time it is. The argument is based on information-theoretic considerations: we analyse how the accuracy of a clock scales with its size, measured in terms of the number of bits that could be stored in it. We find that a quantum clock can achieve a quadratically improved accuracy compared to a purely classical one of the same size.
We create a multi-partite entangled state by storing a single photon in a crystal that contains many large atomic ensembles with distinct resonance frequencies. The photon is re-emitted at a well-defined time due to an interference effect analogous to multi-slit diffraction. We derive a lower bound for the number of entangled ensembles based on the contrast of the interference and the single-photon character of the input, and we experimentally demonstrate entanglement between over two hundred ensembles, each containing a billion atoms. In addition, we illustrate the fact that each individual ensemble contains further entanglement. Our results are the first demonstration of entanglement between many macroscopic systems in a solid and open the door to creating even more complex entangled states.