Do you want to publish a course? Click here

Characterising two-sided quantum correlations beyond entanglement via metric-adjusted f-correlations

68   0   0.0 ( 0 )
 Added by Gerardo Adesso
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce an infinite family of quantifiers of quantum correlations beyond entanglement which vanish on both classical-quantum and quantum-classical states and are in one-to-one correspondence with the metric-adjusted skew informations. The `quantum $f-$correlations are defined as the maximum metric-adjusted $f-$correlations between pairs of local observables with the same fixed equispaced spectrum. We show that these quantifiers are entanglement monotones when restricted to pure states of qubit-qudit systems. We also evaluate the quantum $f-$correlations in closed form for two-qubit systems and discuss their behaviour under local commutativity preserving channels. We finally provide a physical interpretation for the quantifier corresponding to the average of the Wigner-Yanase-Dyson skew informations.



rate research

Read More

Dissimilar notions of quantum correlations have been established, each being motivated through particular applications in quantum information science and each competing for being recognized as the most relevant measure of quantumness. In this contribution, we experimentally realize a form of quantum correlation that exists even in the absence of entanglement and discord. We certify the presence of such quantum correlations via negativities in the regularized two-mode Glauber-Sudarshan function. Our data show compatibility with an incoherent mixture of orthonormal photon-number states, ruling out quantum coherence and other kinds of quantum resources. By construction, the quantumness of our state is robust against dephasing, thus requiring fewer experimental resources to ensure stability. In addition, we theoretically show how multimode entanglement can be activated based on the generated, nonentangled state. Therefore, we implement a robust kind of nonclassical photon-photon correlated state with useful applications in quantum information processing.
We construct an entanglement witness for many-qubit systems, based on symmetric two-body correlations with two measurement settings. This witness is able to detect the entanglement of some Dicke states for any number of particles, and such detection exhibits some robustness against white noise and thermal noise under the Lipkin-Meshkov-Glick Hamiltonian. In addition, it detects the entanglement of spin-squeezed states, with a detection strength that approaches the maximal value for sufficiently large numbers of particles. As spin-squeezed states can be experimentally generated, the properties of the witness with respect to these states may be amenable to experimental investigation. Finally, we show that while the witness is unable to detect GHZ states, it is instead able to detect superpositions of Dicke states with GHZ states.
We derive an exact lower bound to a universal measure of frustration in degenerate ground states of quantum many-body systems. The bound results in the sum of two contributions: entanglement and classical correlations arising from local measurements. We show that average frustration properties are completely determined by the behavior of the maximally mixed ground state. We identify sufficient conditions for a quantum spin system to saturate the bound, and for models with twofold degeneracy we prove that average and local frustration coincide.
Local unitary operations allow for a unifying approach to the quantification of quantum correlations among the constituents of a bipartite quantum system. For pure states, the distance between a given state and its image under least-perturbing local unitary operations is a bona fide measure of quantum entanglement, the so-called entanglement of response, which can be extended to mixed states via the convex roof construction. On the other hand, when defined directly on mixed states perturbed by local unitary operations, such a distance turns out to be a bona fide measure of quantum correlations, the so-called discord of response. Exploiting this unified framework, we perform a detailed comparison between two-body entanglement and two-body quantum discord in infinite XY quantum spin chains both in symmetry-preserving and symmetry-breaking ground states as well as in thermal states at finite temperature. The results of the investigation show that in symmetry-preserving ground states the two-point quantum discord dominates over the two-point entanglement, while in symmetrybreaking ground states the two-point quantum discord is strongly suppressed and the two-point entanglement is essentially unchanged. In thermal states, for certain regimes of Hamiltonian parameters, we show that the pairwise quantum discord and the pairwise entanglement can increase with increasing thermal fluctuations.
465 - Ross Dorner , Vlatko Vedral 2012
We provide an historical perspective of how the notion of correlations has evolved within quantum physics. We begin by reviewing Shannons information theory and its first application in quantum physics, due to Everett, in explaining the information conveyed during a quantum measurement. This naturally leads us to Lindblads information theoretic analysis of quantum measurements and his emphasis of the difference between the classical and quantum mutual information. After briefly summarising the quantification of entanglement using these and related ideas, we arrive at the concept of quantum discord that naturally captures the boundary between entanglement and classical correlations. Finally we discuss possible links between discord and the generation of correlations in thermodynamic transformations of coupled harmonic oscillators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا