No Arabic abstract
A clock is, from an information-theoretic perspective, a system that emits information about time. One may therefore ask whether the theory of information imposes any constraints on the maximum precision of clocks. Here we show a quantum-over-classical advantage for clocks or, more precisely, the task of generating information about what time it is. The argument is based on information-theoretic considerations: we analyse how the accuracy of a clock scales with its size, measured in terms of the number of bits that could be stored in it. We find that a quantum clock can achieve a quadratically improved accuracy compared to a purely classical one of the same size.
Interesting effects arise in cyclic machines where both heat and ergotropy transfer take place between the energising bath and the system (the working fluid). Such effects correspond to unconventional decompositions of energy exchange between the bath and the system into heat and work, respectively, resulting in efficiency bounds that may surpass the Carnot efficiency. However, these effects are not directly linked with quantumness, but rather with heat and ergotropy, the likes of which can be realised without resorting to quantum mechanics.
For a Markovian open quantum system it is possible, by continuously monitoring the environment, to know the stochastically evolving pure state of the system without altering the master equation. In general, even for a system with a finite Hilbert space dimension $D$, the pure state trajectory will explore an infinite number of points in Hilbert space, meaning that the dimension $K$ of the classical memory required for the tracking is infinite. However, Karasik and Wiseman [Phys. Rev. Lett., 106(2):020406, 2011] showed that tracking of a qubit ($D=2$) is always possible with a bit ($K=2$), and gave a heuristic argument implying that a finite $K$ should be sufficient for any $D$, although beyond $D=2$ it would be necessary to have $K>D$. Our paper is concerned with rigorously investigating the relationship between $D$ and $K_{rm min}$, the smallest feasible $K$. We confirm the long-standing conjecture of Karasik and Wiseman that, for generic systems with $D>2$, $K_{rm min}>D$, by a computational proof (via Hilbert Nullstellensatz certificates of infeasibility). That is, beyond $D=2$, $D$-dimensional open quantum systems are provably harder to track than $D$-dimensional open classical systems. Moreover, we develop, and better justify, a new heuristic to guide our expectation of $K_{rm min}$ as a function of $D$, taking into account the number $L$ of Lindblad operators as well as symmetries in the problem. The use of invariant subspace and Wigner symmetries makes it tractable to conduct a numerical search, using the method of polynomial homotopy continuation, to find finite physically realizable ensembles (as they are known) in $D=3$. The results of this search support our heuristic. We thus have confidence in the most interesting feature of our heuristic: in the absence of symmetries, $K_{rm min} sim D^2$, implying a quadratic gap between the classical and quantum tracking problems.
We prove that any one-dimensional (1D) quantum state with small quantum conditional mutual information in all certain tripartite splits of the system, which we call a quantum approximate Markov chain, can be well-approximated by a Gibbs state of a short-range quantum Hamiltonian. Conversely, we also derive an upper bound on the (quantum) conditional mutual information of Gibbs states of 1D short-range quantum Hamiltonians. We show that the conditional mutual information between two regions A and C conditioned on the middle region B decays exponentially with the square root of the length of B. These two results constitute a variant of the Hammersley-Clifford theorem (which characterizes Markov networks, i.e. probability distributions which have vanishing conditional mutual information, as Gibbs states of classical short-range Hamiltonians) for 1D quantum systems. The result can be seen as a strengthening - for 1D systems - of the mutual information area law for thermal states. It directly implies an efficient preparation of any 1D Gibbs state at finite temperature by a constant-depth quantum circuit.
Network of packages with regulatory interactions (dependences and conflicts) from Debian GNU/Linux operating system is compiled and used as analogy of a gene regulatory network. Using a trace-back algorithm we assembly networks from the potential pool of packages for both scale-free and exponential topology from real and a null model data, respectively. We calculate the maximum number of packages that can be functionally installed in the system (i.e., the active network size). We show that scale-free regulatory networks allow a larger active network size than random ones. Small genomes with scale-free regulatory topology could allow much more functionality than large genomes with an exponential one, with implications on its dynamics, robustness and evolution.
This paper presents the geometric setting of quantum variational principles and extends it to comprise the interaction between classical and quantum degrees of freedom. Euler-Poincare reduction theory is applied to the Schrodinger, Heisenberg and Wigner-Moyal dynamics of pure states. This construction leads to new variational principles for the description of mixed quantum states. The corresponding momentum map properties are presented as they arise from the underlying unitary symmetries. Finally, certain semidirect-product group structures are shown to produce new variational principles for Diracs interaction picture and the equations of hybrid classical-quantum dynamics.