Do you want to publish a course? Click here

Uniquely solvable and energy stable decoupled schemes for Cahn-Hilliard-Stokes-Darcy system for two-phase flows in karstic geometry

101   0   0.0 ( 0 )
 Added by Xiaoming Wang
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We propose and analyze two novel decoupled numerical schemes for solving the Cahn-Hilliard-Stokes-Darcy (CHSD) model for two-phase flows in karstic geometry. In the first numerical scheme, we explore a fractional step method (operator splitting) to decouple the phase-field (Cahn-Hilliard equation) from the velocity field (Stokes-Darcy fluid equations). To further decouple the Stokes-Darcy system, we introduce a first order pressure stabilization term in the Darcy solver in the second numerical scheme so that the Stokes system is decoupled from the Darcy system and hence the CHSD system can be solved in a fully decoupled manner. We show that both decoupled numerical schemes are uniquely solvable, energy stable, and mass conservative. Ample numerical results are presented to demonstrate the accuracy and efficiency of our schemes.



rate research

Read More

We study the well-posedness of a coupled Cahn-Hilliard-Stokes-Darcy system which is a diffuse-interface model for essentially immiscible two phase incompressible flows with matched density in a karstic geometry. Existence of finite energy weak solution that is global in time is established in both 2D and 3D. Weak-strong uniqueness property of the weak solutions is provided as well.
We analyze a fully discrete finite element numerical scheme for the Cahn-Hilliard-Stokes-Darcy system that models two-phase flows in coupled free flow and porous media. To avoid a well-known difficulty associated with the coupling between the Cahn-Hilliard equation and the fluid motion, we make use of the operator-splitting in the numerical scheme, so that these two solvers are decoupled, which in turn would greatly improve the computational efficiency. The unique solvability and the energy stability have been proved in~cite{CHW2017}. In this work, we carry out a detailed convergence analysis and error estimate for the fully discrete finite element scheme, so that the optimal rate convergence order is established in the energy norm, i.e.,, in the $ell^infty (0, T; H^1) cap ell^2 (0, T; H^2)$ norm for the phase variables, as well as in the $ell^infty (0, T; H^1) cap ell^2 (0, T; H^2)$ norm for the velocity variable. Such an energy norm error estimate leads to a cancellation of a nonlinear error term associated with the convection part, which turns out to be a key step to pass through the analysis. In addition, a discrete $ell^2 (0;T; H^3)$ bound of the numerical solution for the phase variables plays an important role in the error estimate, which is accomplished via a discrete version of Gagliardo-Nirenberg inequality in the finite element setting.
191 - Daozhi Han , Xiaoming Wang 2014
We propose a novel second order in time numerical scheme for Cahn-Hilliard-Navier- Stokes phase field model with matched density. The scheme is based on second order convex-splitting for the Cahn-Hilliard equation and pressure-projection for the Navier-Stokes equation. We show that the scheme is mass-conservative, satisfies a modified energy law and is therefore unconditionally stable. Moreover, we prove that the scheme is uncondition- ally uniquely solvable at each time step by exploring the monotonicity associated with the scheme. Thanks to the weak coupling of the scheme, we design an efficient Picard iteration procedure to further decouple the computation of Cahn-Hilliard equation and Navier-Stokes equation. We implement the scheme by the mixed finite element method. Ample numerical experiments are performed to validate the accuracy and efficiency of the numerical scheme.
We present several first-order and second-order numerical schemes for the Cahn-Hilliard equation with discrete unconditional energy stability. These schemes stem from the generalized Positive Auxiliary Variable (gPAV) idea, and require only the solution of linear algebraic systems with a constant coefficient matrix. More importantly, the computational complexity (operation count per time step) of these schemes is approximately a half of those of the gPAV and the scalar auxiliary variable (SAV) methods in previous works. We investigate the stability properties of the proposed schemes to establish stability bounds for the field function and the auxiliary variable, and also provide their error analyses. Numerical experiments are presented to verify the theoretical analyses and also demonstrate the stability of the schemes at large time step sizes.
In this work, several multilevel decoupled algorithms are proposed for a mixed Navier-Stokes/Darcy model. These algorithms are based on either successively or parallelly solving two linear subdomain problems after solving a coupled nonlinear coarse grid problem. Error estimates are given to demonstrate the approximation accuracy of the algorithms. Experiments based on both the first order and the second order discretizations are presented to show the effectiveness of the decoupled algorithms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا