In this work, several multilevel decoupled algorithms are proposed for a mixed Navier-Stokes/Darcy model. These algorithms are based on either successively or parallelly solving two linear subdomain problems after solving a coupled nonlinear coarse grid problem. Error estimates are given to demonstrate the approximation accuracy of the algorithms. Experiments based on both the first order and the second order discretizations are presented to show the effectiveness of the decoupled algorithms.
We analyze a fully discrete finite element numerical scheme for the Cahn-Hilliard-Stokes-Darcy system that models two-phase flows in coupled free flow and porous media. To avoid a well-known difficulty associated with the coupling between the Cahn-Hilliard equation and the fluid motion, we make use of the operator-splitting in the numerical scheme, so that these two solvers are decoupled, which in turn would greatly improve the computational efficiency. The unique solvability and the energy stability have been proved in~cite{CHW2017}. In this work, we carry out a detailed convergence analysis and error estimate for the fully discrete finite element scheme, so that the optimal rate convergence order is established in the energy norm, i.e.,, in the $ell^infty (0, T; H^1) cap ell^2 (0, T; H^2)$ norm for the phase variables, as well as in the $ell^infty (0, T; H^1) cap ell^2 (0, T; H^2)$ norm for the velocity variable. Such an energy norm error estimate leads to a cancellation of a nonlinear error term associated with the convection part, which turns out to be a key step to pass through the analysis. In addition, a discrete $ell^2 (0;T; H^3)$ bound of the numerical solution for the phase variables plays an important role in the error estimate, which is accomplished via a discrete version of Gagliardo-Nirenberg inequality in the finite element setting.
In this paper, we develop the numerical theory of decoupled modified characteristic finite element method with different subdomain time steps for the mixed stabilized formulation of nonstationary dual-porosity-Navier-Stokes model. Based on partitioned time-stepping methods, the system is decoupled, which means that the Navier-Stokes equations and two different Darcy equations are solved independently at each time step of subdomain. In particular, the Navier-Stokes equations are solved by the modified characteristic finite element method, which overcome the computational difficulties caused by the nonlinear term. In order to increase the efficiency, different time steps are used to different subdomains. The stability of this method is proved. In addition, we verify the optimal $L^2$-norm error convergence order of the solutions by mathematical induction, whose proof implies the uniform $L^{infty}$-boundedness of the fully discrete velocity solution. Finally, some numerical tests are presented to show efficiency of the proposed method.
We propose and analyze two novel decoupled numerical schemes for solving the Cahn-Hilliard-Stokes-Darcy (CHSD) model for two-phase flows in karstic geometry. In the first numerical scheme, we explore a fractional step method (operator splitting) to decouple the phase-field (Cahn-Hilliard equation) from the velocity field (Stokes-Darcy fluid equations). To further decouple the Stokes-Darcy system, we introduce a first order pressure stabilization term in the Darcy solver in the second numerical scheme so that the Stokes system is decoupled from the Darcy system and hence the CHSD system can be solved in a fully decoupled manner. We show that both decoupled numerical schemes are uniquely solvable, energy stable, and mass conservative. Ample numerical results are presented to demonstrate the accuracy and efficiency of our schemes.
This paper proposes an interface/boundary-unfitted eXtended hybridizable discontinuous Galerkin (X-HDG) method for Darcy-Stokes-Brinkman interface problems in two and three dimensions. The method uses piecewise linear polynomials for the velocity approximation and piecewise constants for both the velocity gradient and pressure approximations in the interior of elements inside the subdomains separated by the interface, uses piecewise constants for the numerical traces of velocity on the inter-element boundaries inside the subdomains, and uses piecewise constants or linear polynomials for the numerical traces of velocity on the interface. Optimal error estimates are derived for the interface-unfitted X-HDG scheme. Numerical experiments are provided to verify the theoretical results and the robustness of the proposed method.
We propose and study two second-order in time implicit-explicit (IMEX) methods for the coupled Stokes-Darcy system that governs flows in karst aquifers. The first is a combination of a second-order backward differentiation formula and the second-order Gears extrapolation approach. The second is a combination of the second-order Adams-Moulton and second-order Adams-Bashforth methods. Both algorithms only require the solution of two decoupled problems at each time step, one Stokes and the other Darcy. Hence, these schemes are very efficient and can be easily implemented using legacy codes. We establish the unconditional and uniform in time stability for both schemes. The uniform in time stability leads to uniform in time control of the error which is highly desirable for modeling physical processes, e.g., contaminant sequestration and release, that occur over very long time scales. Error estimates for fully-discretized schemes using finite element spatial discretizations are derived. Numerical examples are provided that illustrate the accuracy, efficiency, and long-time stability of the two schemes.