Do you want to publish a course? Click here

Existence and uniqueness of global weak solutions to a Cahn-Hilliard-Stokes-Darcy system for two phase incompressible flows in karstic geometry

154   0   0.0 ( 0 )
 Added by Xiaoming Wang
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We study the well-posedness of a coupled Cahn-Hilliard-Stokes-Darcy system which is a diffuse-interface model for essentially immiscible two phase incompressible flows with matched density in a karstic geometry. Existence of finite energy weak solution that is global in time is established in both 2D and 3D. Weak-strong uniqueness property of the weak solutions is provided as well.



rate research

Read More

We propose and analyze two novel decoupled numerical schemes for solving the Cahn-Hilliard-Stokes-Darcy (CHSD) model for two-phase flows in karstic geometry. In the first numerical scheme, we explore a fractional step method (operator splitting) to decouple the phase-field (Cahn-Hilliard equation) from the velocity field (Stokes-Darcy fluid equations). To further decouple the Stokes-Darcy system, we introduce a first order pressure stabilization term in the Darcy solver in the second numerical scheme so that the Stokes system is decoupled from the Darcy system and hence the CHSD system can be solved in a fully decoupled manner. We show that both decoupled numerical schemes are uniquely solvable, energy stable, and mass conservative. Ample numerical results are presented to demonstrate the accuracy and efficiency of our schemes.
We study a diffuse interface model describing the evolution of the flow of a binary fluid in a Hele-Shaw cell. The model consists of a Cahn-Hilliard-Darcy (CHD) type system with transport and mass source. A relevant physical application is related to tumor growth dynamics, which in particular justifies the occurrence of a mass inflow. We study the initial-boundary value problem for this model and prove global existence and uniqueness of strong solutions in two space dimensions as well as local existence in three space dimensions.
The motion of two contiguous incompressible and viscous fluids is described within the diffuse interface theory by the so-called Model H. The system consists of the Navier-Stokes equations, which are coupled with the Cahn-Hilliard equation associated to the Ginzburg-Landau free energy with physically relevant logarithmic potential. This model is studied in bounded smooth domain in R^d, d=2 and d=3, and is supplemented with a no-slip condition for the velocity, homogeneous Neumann boundary conditions for the order parameter and the chemical potential, and suitable initial conditions. We study uniqueness and regularity of weak and strong solutions. In a two-dimensional domain, we show the uniqueness of weak solutions and the existence and uniqueness of global strong solutions originating from an initial velocity u_0 in V, namely u_0 in H_0^1 such that div u_0=0. In addition, we prove further regularity properties and the validity of the instantaneous separation property. In a three-dimensional domain, we show the existence and uniqueness of local strong solutions with initial velocity u_0 in V.
66 - Xiaoming Wang , Hao Wu 2020
We study the Navier-Stokes-Darcy-Boussinesq system that models the thermal convection of a fluid overlying a saturated porous medium in a general decomposed domain. In both two and three spatial dimensions, we first prove the existence of global weak solutions to the initial boundary value problem subject to the Lions and Beavers-Joseph-Saffman-Jones interface conditions. The proof is based on a proper time-implicit discretization scheme combined with the Leray-Schauder principle and compactness arguments. Next, we establish a weak-strong uniqueness result such that a weak solution coincides with a strong solution emanating from the same initial data as long as the latter exists.
153 - Jingrui Wang , Keyan Wang 2016
In this paper we prove the almost sure existence of global weak solution to the 3D incompressible Navier-Stokes Equation for a set of large data in $dot{H}^{-alpha}(mathbb{R}^{3})$ or $dot{H}^{-alpha}(mathbb{T}^{3})$ with $0<alphaleq 1/2$. This is achieved by randomizing the initial data and showing that the energy of the solution modulus the linear part keeps finite for all $tgeq0$. Moreover, the energy of the solutions is also finite for all $t>0$. This improves the recent result of Nahmod, Pavlovi{c} and Staffilani on (SIMA, [1])in which $alpha$ is restricted to $0<alpha<frac{1}{4}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا