We discuss the implementation of two different truncated Generalized Gibbs Ensembles (GGE) describing the stationary state after a mass quench process in the Ising Field Theory. One truncated GGE is based on the semi-local charges of the model, the other on regulariz
We consider the non-equilibrium dynamics in isolated systems, described by quantum field theories (QFTs). After being prepared in a density matrix that is not an eigenstate of the Hamiltonian, such systems are expected to relax locally to a stationary state. In a presence of local conservation laws, these stationary states are believed to be described by appropriate generalized Gibbs ensembles. Here we demonstrate that in order to obtain a correct description of the stationary state, it is necessary to take into account conservation laws that are not (ultra-)local in the usual sense of QFT, but fulfil a significantly weaker form of locality. We discuss implications of our results for integrable QFTs in one spatial dimension.
In this work, we show that the dissipation in a many-body system under an arbitrary non-equilibrium process is related to the R{e}nyi divergences between two states along the forward and reversed dynamics under very general family of initial conditions. This relation generalizes the links between dissipated work and Renyi divergences to quantum systems with conserved quantities whose equilibrium state is described by the generalized Gibbs ensemble. The relation is applicable for quantum systems with conserved quantities and can be applied to protocols driving the system between integrable and chaotic regimes. We demonstrate our ideas by considering the one-dimensional transverse quantum Ising model which is driven out of equilibrium by the instantaneous switching of the transverse magnetic field.
In this paper and its sequel, we construct topologically invariant defects in two-dimensional classical lattice models and quantum spin chains. We show how defect lines commute with the transfer matrix/Hamiltonian when they obey the defect commutation relations, cousins of the Yang-Baxter equation. These relations and their solutions can be extended to allow defect lines to branch and fuse, again with properties depending only on topology. In this part I, we focus on the simplest example, the Ising model. We define lattice spin-flip and duality defects and their branching, and prove they are topological. One useful consequence is a simple implementation of Kramers-Wannier duality on the torus and higher genus surfaces by using the fusion of duality defects. We use these topological defects to do simple calculations that yield exact properties of the conformal field theory describing the continuum limit. For example, the shift in momentum quantization with duality-twisted boundary conditions yields the conformal spin 1/16 of the chiral spin field. Even more strikingly, we derive the modular transformation matrices explicitly and exactly.
We numerically simulate the time evolution of the Ising field theory after quenches starting from the $E_8$ integrable model using the Truncated Conformal Space Approach. The results are compared with two different analytic predictions based on form factor expansions in the pre-quench and post-quench basis, respectively. Our results clarify the domain of validity of these expansions and suggest directions for further improvement. We show for quenches in the $E_8$ model that the initial state is not of the integrable pair state form. We also construct quench overlap functions and show that their high-energy asymptotics are markedly different from those constructed before in the sinh/sine-Gordon theory, and argue that this is related to properties of the ultraviolet fixed point.
Generalized Gibbs ensembles have been used as powerful tools to describe the steady state of integrable many-particle quantum systems after a sudden change of the Hamiltonian. Here we demonstrate numerically, that they can be used for a much broader class of problems. We consider integrable systems in the presence of weak perturbations which both break integrability and drive the system to a state far from equilibrium. Under these conditions, we show that the steady state and the time-evolution on long time-scales can be accurately described by a (truncated) generalized Gibbs ensemble with time-dependent Lagrange parameters, determined from simple rate equations. We compare the numerically exact time evolutions of density matrices for small systems with a theory based on block-diagonal density matrices (diagonal ensemble) and a time-dependent generalized Gibbs ensemble containing only small number of approximately conserved quantities, using the one-dimensional Heisenberg model with perturbations described by Lindblad operators as an example.