No Arabic abstract
In this paper and its sequel, we construct topologically invariant defects in two-dimensional classical lattice models and quantum spin chains. We show how defect lines commute with the transfer matrix/Hamiltonian when they obey the defect commutation relations, cousins of the Yang-Baxter equation. These relations and their solutions can be extended to allow defect lines to branch and fuse, again with properties depending only on topology. In this part I, we focus on the simplest example, the Ising model. We define lattice spin-flip and duality defects and their branching, and prove they are topological. One useful consequence is a simple implementation of Kramers-Wannier duality on the torus and higher genus surfaces by using the fusion of duality defects. We use these topological defects to do simple calculations that yield exact properties of the conformal field theory describing the continuum limit. For example, the shift in momentum quantization with duality-twisted boundary conditions yields the conformal spin 1/16 of the chiral spin field. Even more strikingly, we derive the modular transformation matrices explicitly and exactly.
We construct topological defects in two-dimensional classical lattice models and quantum chains. The defects satisfy local commutation relations guaranteeing that the partition function is independent of their path. These relations and their solutions are extended to allow defect lines to fuse, branch and satisfy all the properties of a fusion category. We show how the two-dimensional classical lattice models and their topological defects are naturally described by boundary conditions of a Turaev-Viro-Barrett-Westbury partition function. These defects allow Kramers-Wannier duality to be generalized to a large class of models, explaining exact degeneracies between non-symmetry-related ground states as well as in the low-energy spectrum. They give a precise and general notion of twisted boundary conditions and the universal behaviour under Dehn twists. Gluing a topological defect to a boundary yields linear identities between partition functions with different boundary conditions, allowing ratios of the universal g-factor to be computed exactly on the lattice. We develop this construction in detail in a variety of examples, including the Potts, parafermion and height models.
We introduce and analyze a quantum spin/Majorana chain with a tricritical Ising point separating a critical phase from a gapped phase with order-disorder coexistence. We show that supersymmetry is not only an emergent property of the scaling limit, but manifests itself on the lattice. Namely, we find explicit lattice expressions for the supersymmetry generators and currents. Writing the Hamiltonian in terms of these generators allows us to find the ground states exactly at a frustration-free coupling. These confirm the coexistence between two (topologically) ordered ground states and a disordered one in the gapped phase. Deforming the model by including explicit chiral symmetry breaking, we find the phases persist up to an unusual chiral phase transition where the supersymmetry becomes exact even on the lattice.
The recently fabricated two-dimensional magnetic materials Cu9X2(cpa)6.xH2O (cpa=2-carboxypentonic acid; X=F,Cl,Br) have copper sites which form a triangular kagome lattice (TKL), formed by introducing small triangles (``a-trimers) inside of each kagome triangle (``b-trimer). We show that in the limit where spins residing on b-trimers have Ising character, quantum fluctuations of XXZ spins residing on the a-trimers can be exactly accounted for in the absence of applied field. This is accomplished through a mapping to the kagome Ising model, for which exact analytic solutions exist. We derive the complete finite temperature phase diagram for this XXZ-Ising model, including the residual zero temperature entropies of the seven ground state phases. Whereas the disordered (spin liquid) ground state of the pure Ising TKL model has macroscopic residual entropy ln72=4.2767... per unit cell, the introduction of transverse(quantum) couplings between neighboring $a$-spins reduces this entropy to 2.5258... per unit cell. In the presence of applied magnetic field, we map the TKL XXZ-Ising model to the kagome Ising model with three-spin interactions, and derive the ground state phase diagram. A small (or even infinitesimal) field leads to a new phase that corresponds to a non-intersecting loop gas on the kagome lattice, with entropy 1.4053... per unit cell and a mean magnetization for the b-spins of 0.12(1) per site. In addition, we find that for moderate applied field, there is a critical spin liquid phase which maps to close-packed dimers on the honeycomb lattice, which survives even when the a-spins are in the Heisenberg limit.
We revisit the two-dimensional quantum Ising model by computing renormalization group flows close to its quantum critical point. The low but finite temperature regime in the vicinity of the quantum critical point is squashed between two distinct non-Gaussian fixed points: the classical fixed point dominated by thermal fluctuations and the quantum critical fixed point dominated by zero-point quantum fluctuations. Truncating an exact flow equation for the effective action we derive a set of renormalization group equations and analyze how the interplay of quantum and thermal fluctuations, both non-Gaussian in nature, influences the shape of the phase boundary and the region in the phase diagram where critical fluctuations occur. The solution of the flow equations makes this interplay transparent: we detect finite temperature crossovers by computing critical exponents and we confirm that the power law describing the finite temperature phase boundary as a function of control parameter is given by the correlation length exponent at zero temperature as predicted in an epsilon-expansion with epsilon=1 by Sachdev, Phys. Rev. B 55, 142 (1997).
Using new as well as known results on dimerized quantum spin chains with frustration, we are able to infer some properties on the low-energy spectrum of the O(3) Nonlinear Sigma Model with a topological theta-term. In particular, for sufficiently strong coupling, we find a range of values of theta where a singlet bound state is stable under the triplet continuum. On the basis of these results, we propose a new renormalization group flow diagram for the Nonlinear Sigma Model with theta-term.