Do you want to publish a course? Click here

Generalized Gibbs Ensembles for Quantum Field Theories

170   0   0.0 ( 0 )
 Added by Fabian H. L. Essler
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the non-equilibrium dynamics in isolated systems, described by quantum field theories (QFTs). After being prepared in a density matrix that is not an eigenstate of the Hamiltonian, such systems are expected to relax locally to a stationary state. In a presence of local conservation laws, these stationary states are believed to be described by appropriate generalized Gibbs ensembles. Here we demonstrate that in order to obtain a correct description of the stationary state, it is necessary to take into account conservation laws that are not (ultra-)local in the usual sense of QFT, but fulfil a significantly weaker form of locality. We discuss implications of our results for integrable QFTs in one spatial dimension.



rate research

Read More

Generalized Gibbs ensembles have been used as powerful tools to describe the steady state of integrable many-particle quantum systems after a sudden change of the Hamiltonian. Here we demonstrate numerically, that they can be used for a much broader class of problems. We consider integrable systems in the presence of weak perturbations which both break integrability and drive the system to a state far from equilibrium. Under these conditions, we show that the steady state and the time-evolution on long time-scales can be accurately described by a (truncated) generalized Gibbs ensemble with time-dependent Lagrange parameters, determined from simple rate equations. We compare the numerically exact time evolutions of density matrices for small systems with a theory based on block-diagonal density matrices (diagonal ensemble) and a time-dependent generalized Gibbs ensemble containing only small number of approximately conserved quantities, using the one-dimensional Heisenberg model with perturbations described by Lindblad operators as an example.
We apply the theory of Quantum Generalized Hydrodynamics (QGHD) introduced in [Phys. Rev.Lett. 124, 140603 (2020)] to derive asymptotically exact results for the density fluctuations and theentanglement entropy of a one-dimensional trapped Bose gas in the Tonks-Girardeau (TG) or hard-core limit, after a trap quench from a double well to a single well. On the analytical side, thequadratic nature of the theory of QGHD is complemented with the emerging conformal invarianceat the TG point to fix the universal part of those quantities. Moreover, the well-known mapping ofhard-core bosons to free fermions, allows to use a generalized form of the Fisher-Hartwig conjectureto fix the non-trivial spacetime dependence of the ultraviolet cutoff in the entanglement entropy. Thefree nature of the TG gas also allows for more accurate results on the numerical side, where a highernumber of particles as compared to the interacting case can be simulated. The agreement betweenanalytical and numerical predictions is extremely good. For the density fluctuations, however, onehas to average out large Friedel oscillations present in the numerics to recover such agreement.
Physical systems made of many interacting quantum particles can often be described by Euler hydrodynamic equations in the limit of long wavelengths and low frequencies. Recently such a classical hydrodynamic framework, now dubbed Generalized Hydrodynamics (GHD), was found for quantum integrable models in one spatial dimension. Despite its great predictive power, GHD, like any Euler hydrodynamic equation, misses important quantum effects, such as quantum fluctuations leading to non-zero equal-time correlations between fluid cells at different positions. Focusing on the one-dimensional gas of bosons with delta repulsion, and on states of zero entropy, for which quantum fluctuations are larger, we reconstruct such quantum effects by quantizing GHD. The resulting theory of quantum GHD can be viewed as a multi-component Luttinger liquid theory, with a small set of effective parameters that are fixed by the Thermodynamic Bethe Ansatz. It describes quantum fluctuations of truly nonequilibrium systems where conventional Luttinger liquid theory fails.
We discuss the implementation of two different truncated Generalized Gibbs Ensembles (GGE) describing the stationary state after a mass quench process in the Ising Field Theory. One truncated GGE is based on the semi-local charges of the model, the other on regulariz
Maximum entropy principle and Souriaus symplectic generalization of Gibbs states have provided crucial insights leading to extensions of standard equilibrium statistical mechanics and thermodynamics. In this brief contribution, we show how such extensions are instrumental in the setting of discrete quantum gravity, towards providing a covariant statistical framework for the emergence of continuum spacetime. We discuss the significant role played by information-theoretic characterizations of equilibrium. We present the Gibbs state description of the geometry of a tetrahedron and its quantization, thereby providing a statistical description of the characterizing quanta of space in quantum gravity. We use field coherent states for a generalized Gibbs state to write an effective statistical field theory that perturbatively generates 2-complexes, which are discrete spacetime histories in several quantum gravity approaches.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا