Do you want to publish a course? Click here

Inelastic Kondo-Andreev tunnelings in a vibrating quantum dot

124   0   0.0 ( 0 )
 Added by Zhan Cao
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Phonon-assisted electronic tunnelings through a vibrating quantum dot embedded between normal and superconducting leads are studied in the Kondo regime. In such a hybrid device, with the bias applied to the normal lead, we find a series of Kondo sidebands separated by half a phonon energy in the differential conductance, which are distinct from the phonon-assisted sidebands previously observed in the conventional Andreev tunnelings and in systems with only normal leads. These Kondo sidebands originate from the Kondo-Andreev cooperative cotunneling mediated by phonons, which exhibit a novel Kondo transport behavior due to the interplay of the Kondo effect, the Andreev tunnelings, and the mechanical vibrations. Our result could be observed in a recent experiment setup [J. Gramich emph{et al.}, PRL textbf{115}, 216801 (2015)], provided that their carbon nanotube device reaches the Kondo regime at low temperatures.



rate research

Read More

193 - J. Fransson , A. V. Balatsky , 2009
We investigate dynamical transport aspects of a combined nanomechanical-superconducting device in which Cooper pair tunneling interfere with the mechanical motion of a vibrating molecular quantum dot embedded in a Josephson junction. Six different regimes for the tunneling dynamics are identified with respect to the electron level and the charging energy in the quantum dot. In five of those regimes new time-scales are introduced which are associated with the energies of the single electron transitions within the quantum dot, while there is one regime where the internal properties of the quantum dot are static.
Over-screened Kondo effect is feasible in carbon nanotube quantum dot junction hosting a spin $tfrac{1}{2}$ atom with single $s$-wave valence electron (e.g Au). The idea is to use the two valleys as two symmetry protected flavor quantum numbers $xi={bf K}, {bf K}$. Perturbative RG analysis exposes the finite weak-coupling two-channel fixed point, where the Kondo temperature is estimated to be around $0.5div5$~K. Remarkably, occurrence of two different scaling regimes implies a non-monotonic dependence of the conductance as function of temperature.
Kondo correlations are responsible for the emergence of a zero-bias peak in the low temperature differential conductance of Coulomb blockaded quantum dots. In the presence of a global SU(2)$otimes$SU(2) symmetry, which can be realized in carbon nanotubes, they also inhibit inelastic transitions which preserve the Kramers pseudospins associated to the symmetry. We report on magnetotransport experiments on a Kondo correlated carbon nanotube where resonant features at the bias corresponding to the pseudospin-preserving transitions are observed. We attribute this effect to a simultaneous enhancement of pseudospin-non-preserving transitions occurring at that bias. This process is boosted by asymmetric tunneling couplings of the two Kramers doublets to the leads and by asymmetries in the potential drops at the leads. Hence, the present work discloses a fundamental microscopic mechanisms ruling transport in Kondo systems far from equilibrium.
We study the low energy spectrum of a correlated quantum dot embedded between the normal conducting and superconducting reservoirs and hybridized with the topological superconducting nanowire, hosting the Majorana end-modes. We investigate the leaking Majorana quasiparticle and inspect its interplay with the proximity induced on-dot pairing and correlations. In particular, we focus on the subgap Kondo effect near the quantum phase transition/crossover from the spinfull (doublet) to the spinless (BCS-type singlet) configurations. Treating the correlations perturbatively and within the NRG approach we study its signatures observable in the Andreev (particle-to-hole conversion) tunneling spectroscopy. We find, that the leaking Majorana mode has a spin-selective influence on the subgap Kondo effect.
We study the Kondo effect in a CNT(left lead)-CNT(QD)-CNT(right lead) structure. Here CNT is a single-wall metallic carbon nanotube, for which 1) the valence and conduction bands of electrons with zero orbital angular momentum ($m=0$) coalesc at the two valley points ${bf{K}}$ and ${bf{K}}$ of the first Brillouin zone and 2) the energy spectrum of electrons with $m e 0$ has a gap whose size is proportional to $|m|$. Following adsorption of hydrogen atoms and application of an appropriately designed gate potential, electron energy levels in the CNT(QD) are tunable to have: 1) two-fold spin degeneracy; 2) two-fold isospin (valley) degeneracy; 3) three-fold orbital degeneracy $m=0,pm1$. As a result, an SU(12) Kondo effect is realized with remarkably high Kondo temperature. Unlike the SU(2) case, the low temperature conductance and magnetic susceptibility have a peak at finite temperature. Moreover, the magnetic susceptibilities for parallel and perpendicular magnetic fields (WRT the tube axis) display anisotropy with a universal ratio $chi_{rm{imp}}^parallel / chi_{rm{imp}}^perp=eta$ that depends only on the electrons orbital and spin $g$ factors.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا