No Arabic abstract
As part of our program to build a complete radio and X-ray database of all the 3CR extragalactic radio sources, we present an analysis of 93 sources for which Chandra archival data are available. Most of these sources have been already published. Here we provide a uniform re-analysis and present nuclear X-ray fluxes and X-ray emission associated with radio jet knots and hotspots using both publicly available radio images and new radio images that have been constructed from data available in the VLA archive. For about 1/3 of the sources in the selected sample a comparison between the Chandra and the radio observations was not reported in the literature: we find X-ray detections of 2 new radio jet knots and 17 hotspots. We also report the X-ray detection of extended emission from the intergalactic medium of 15 galaxy clusters, two of which were most likely unknown previously.
We report on our Chandra Cycle 9 program to observe half of the 60 (unobserved by Chandra) 3C radio sources at z<0.3 for 8 ksec each. Here we give the basic data: the X-ray intensity of the nuclei and any features associated with radio structures such as hot spots and knots in jets. We have measured fluxes in soft, medium and hard bands and are thus able to isolate sources with significant intrinsic column density. For the stronger nuclei, we have applied the standard spectral analysis which provides the best fit values of X-ray spectral index and column density. We find evidence for intrinsic absorption exceeding a column density of 10^{22} cm^{-2} for one third of our sources.
This paper presents the analysis of Chandra X-ray snapshot observations of a subsample of the extragalactic sources listed in the revised Third Cambridge radio catalog (3CR), previously lacking X-ray observations and thus observed during Chandra Cycle 15. This data set extends the current Chandra coverage of the 3CR extragalactic catalog up to redshift $z$=1.0. Our sample includes 22 sources consisting of one compact steep spectrum (CSS) source, three quasars (QSOs), and 18 FR,II radio galaxies. As in our previous analyses, here we report the X-ray detections of radio cores and extended structures (i.e., knots, hotspots and lobes) for all sources in the selected sample. We measured their X-ray intensities in three energy ranges: soft (0.5--1 keV), medium (1--2 keV) and hard (2-7 keV) and we also performed standard X-ray spectral analysis for brighter nuclei. All radio nuclei in our sample have an X-ray counterpart. We also discovered X-ray emission associated with the eastern knot of 3CR,154, with radio hotspots in 3CR,41, 3CR,54 and 3CR,225B and with the southern lobe of 3CR,107. Extended X-ray radiation around the nuclei 3CR,293.1 and 3CR,323 on a scale of few tens kpc was also found. X-ray extended emission, potentially arising from the hot gas in the intergalactic medium and/or due to the high energy counterpart of lobes, is detected for 3CR,93, 3CR,154, 3CR,292 and 3CR, 323 over a few hundreds kpc-scale. Finally, this work also presents an update on the state-of-the-art of Chandra and XMM-Newton observations for the entire 3CR sample.
The aim of this paper is to present an analysis of newly acquired X-ray observations of 16 extragalactic radio sources, listed in the Third Cambridge Revised (3CR) catalog, and not previously observed by Chandra. Observations were performed during Chandra Cycle 17, extending X-ray coverage for the 3CR extragalactic catalog up to $z$=1.5. Among the 16 targets, two lie at $z<$0.5 (i.e., 3CR27, at $z$=0.184 and 3CR69, at $z$=0.458), all the remaining 14 have redshifts between 1.0 and 1.5. In the current sample there are three compact steep spectrum (CSS) sources, three quasars and an FRI radio galaxy, while the other nine are FRII radio galaxies. All radio sources have an X-ray counterpart. We measured nuclear X-ray fluxes as well as X-ray emission associated with radio jet knots, hotspots or lobes in three energy bands: soft (0.5-1 keV), medium (1-2 keV) and hard (2-7 keV). We also performed standard X-ray spectral analysis for the four brightest nuclei. We discovered X-ray emission associated with: the radio lobe of 3CR124; a hotspot of the quasar 3CR220.2; another hotspot of the radio galaxy 3CR238; and the jet knot of 3CR297. We also detected extended X-ray emission around the nuclear region of 3CR124 and 3CR297 on scales of several tens of kpc. Finally, we present an update on the X-ray observations performed with Chandra and XMM-Newton on the entire 3CR extragalactic catalog.
We present the analysis of nine radio sources belonging to the Third Cambridge Revised catalog (3CR) observed with $Chandra$ during Cycle 20 in the redshift range between 1.5 and 2.5. This study completes the 3CR $Chandra$ Snapshot Survey thus guaranteeing the X-ray coverage of all 3CR sources identified to date. This sample lists two compact steep spectrum sources, four radio galaxies and three quasars. We detected X-ray emission from all nuclei, with the only exception of 3C 326.1 and 3C 454.1 and from radio lobes in 6 out of 9 sources at level of confidence larger than $sim$5$sigma$. We measured X-ray fluxes and luminosities for all nuclei and lobes in the soft (0.5 - 1 keV), medium (1 - 2 keV) and hard (2 - 7 keV) X-ray bands. Since the discovered X-ray extended emission is spatially coincident with the radio structure in all cases, its origin could be due to Inverse Compton scattering of the Cosmic Microwave Background (IC/CMB) occurring in radio lobes.
Globular clusters host a variety of lower-luminosity ($L_X<10^{35}$ erg s$^{-1}$) X-ray sources, including accreting neutron stars and black holes, millisecond pulsars, cataclysmic variables, and chromospherically active binaries. In this paper, we provide a comprehensive catalog of more than 1100 X-ray sources in 38 Galactic globular clusters observed by the Chandra X-ray Observatorys ACIS detector. The targets are selected to complement the MAVERIC surveys deep radio continuum maps of Galactic globular clusters. We perform photometry and spectral analysis for each source, determine a best-fit model, and assess the possibility of it being a foreground/background source based on its spectral properties and location in the cluster. We also provide basic assessments of variability. We discuss the distribution of X-ray binaries in globular clusters, their X-ray luminosity function, and carefully analyze systems with $L_X > 10^{33}$ erg s$^{-1}$. Among these moderately bright systems, we discover a new source in NGC 6539 that may be a candidate accreting stellar-mass black hole or a transitional millisecond pulsar. We show that quiescent neutron star LMXBs in globular clusters may spend ~2% of their lifetimes as transitional millisecond pulsars in their active ($L_X>10^{33}$ erg s$^{-1}$) state. Finally, we identify a substantial under-abundance of bright ($L_X>10^{33}$ erg s$^{-1}$) intermediate polars in globular clusters compared to the Galactic field, in contrast with the literature of the past two decades.