Do you want to publish a course? Click here

The MAVERIC Survey: Chandra/ACIS Catalog of Faint X-ray sources in 38 Galactic globular clusters

126   0   0.0 ( 0 )
 Added by Arash Bahramian
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Globular clusters host a variety of lower-luminosity ($L_X<10^{35}$ erg s$^{-1}$) X-ray sources, including accreting neutron stars and black holes, millisecond pulsars, cataclysmic variables, and chromospherically active binaries. In this paper, we provide a comprehensive catalog of more than 1100 X-ray sources in 38 Galactic globular clusters observed by the Chandra X-ray Observatorys ACIS detector. The targets are selected to complement the MAVERIC surveys deep radio continuum maps of Galactic globular clusters. We perform photometry and spectral analysis for each source, determine a best-fit model, and assess the possibility of it being a foreground/background source based on its spectral properties and location in the cluster. We also provide basic assessments of variability. We discuss the distribution of X-ray binaries in globular clusters, their X-ray luminosity function, and carefully analyze systems with $L_X > 10^{33}$ erg s$^{-1}$. Among these moderately bright systems, we discover a new source in NGC 6539 that may be a candidate accreting stellar-mass black hole or a transitional millisecond pulsar. We show that quiescent neutron star LMXBs in globular clusters may spend ~2% of their lifetimes as transitional millisecond pulsars in their active ($L_X>10^{33}$ erg s$^{-1}$) state. Finally, we identify a substantial under-abundance of bright ($L_X>10^{33}$ erg s$^{-1}$) intermediate polars in globular clusters compared to the Galactic field, in contrast with the literature of the past two decades.

rate research

Read More

We investigate potential correlations between radio source counts (after background corrections) of 22 Galactic globular clusters (GCs) from the MAVERIC survey, and stellar encounter rates ($Gamma$) and masses ($M$) of the GCs. Applying a radio luminosity limit of $L_mathrm{lim}=5.0times 10^{27}~mathrm{erg~s^{-1}}$, we take a census of radio sources in the core and those within the half-light radius. By following a maximum likelihood method and adopting a simplified linear model, we find an unambiguous dependence of core radio source counts on $Gamma$ and/or $M$ at 90% confidence, but no clear dependence of source counts within the half-light radius on either $Gamma$ or $M$. Five of the identified radio sources in cores above our adopted limit are millisecond pulsars or neutron star X-ray binaries (XRBs), the dependence of which on $Gamma$ is well-known, but another is a published black hole (BH) XRB candidate, and ten others are not identified. Accounting for the verified cluster members increases the significance of correlation with $M$ and/or $Gamma$ (to 99% confidence), for fits to core and half-light region source counts, while excluding a dependence on $Gamma$ alone at 90% (core) and 68% (half-light) confidence. This is consistent with published dynamical simulations of GC BH interactions that argue $Gamma$ will be a poor predictor of the distribution of accreting BHs in GCs. Future multiwavelength follow-up to verify cluster membership will enable stronger constraints on the dependence of radio source classes on cluster properties, promising a new view on the dynamics of BHs in GCs.
We report on the discovery of 41 new pulsating sources in the data of the Chandra Advanced CCD Imaging Spectrometer, which is sensitive to X-ray photons in the 0.3-10 keV band. The archival data of the first 15 years of Chandra observations were retrieved and analysed by means of fast Fourier transforms, employing a peak-detection algorithm able to screen candidate signals in an automatic fashion. We carried out the search for new X-ray pulsators in light curves with more than 50 photons, for a total of about 190,000 lightcurves out of about 430,000 extracted. With these numbers, the ChAndra Timing Survey at Brera And Roma astronomical observatories (CATS@BAR) - as we called the project - represents the largest ever systematic search for coherent signals in the classic X-ray band. More than 50 per cent of the signals were confirmed by further Chandra (for those sources with two or more pointings), XMM-Newton or ROSAT data. The period distribution of the new X-ray pulsators above about 2,000s resembles that of cataclysmic variables, while there is a paucity of sources with shorter period and low fluxes. Since there is not an obvious bias against these detections, a possible interpretation is in terms of a magnetic gating mechanism in accreting neutron stars. Finally, we note that CATS@BAR is a living project and the detection algorithm will continue to be routinely applied to the new Chandra data as they become public. Based on the results obtained so far, we expect to discover about three new pulsators every year.
The features and make up of the population of X-ray sources in Galactic star clusters reflect the properties of the underlying stellar environment. Cluster age, mass, stellar encounter rate, binary frequency, metallicity, and maybe other properties as well, determine to what extent we can expect a contribution to the cluster X-ray emission from low-mass X-ray binaries, millisecond pulsars, cataclysmic variables, and magnetically active binaries. Sensitive X-ray observations with XMM-Newton and certainly Chandra have yielded new insights into the nature of individual sources and the effects of dynamical encounters. They have also provided a new perspective on the collective X-ray properties of clusters, in which the X-ray emissivities of globular clusters and old open clusters can be compared to each other and to those of other environments. I will review our current understanding of cluster X-ray sources, focusing on star clusters older than about 1 Gyr, illustrated with recent results.
188 - Yue Zhao 2020
We present a deep ($sim 330~mathrm{ks}$) {it Chandra} survey of the Galactic globular cluster M30 (NGC 7099). Combining the new Cycle 18 with the previous Cycle 3 observations we report a total of 10 new X-ray point sources within the $1.03$ arcmin half-light radius, compiling an extended X-ray catalogue of a total of 23 sources. We incorporate imaging observations by the {it Hubble Space Telescope} and the {it Karl G. Jansky Very Large Array} from the MAVERIC survey to search for optical and radio counterparts to the new and old sources. Two X-ray sources are found to have a radio counterpart, including the known millisecond pulsar PSR J2140$-$2310A, the radio position of which also matches a previously reported faint optical counterpart which is slightly redder than the main sequence. We found optical counterparts to $18$ of the $23$ X-ray sources, identifying $2$ new cataclysmic variables (CVs), $5$ new CV candidates, $2$ new candidates of RS CVn type of active binary (AB), and $2$ new candidates of BY Dra type of AB. The remaining unclassified X-ray sources are likely background active galactic nuclei (AGN), as their number is consistent with the expected number of AGN at our X-ray sensitivity. Finally, our analysis of radial profiles of different source classes suggests that bright CVs are more centrally distributed than faint CVs in M30, consistent with other core-collapsed globular clusters.
This study presents the final source catalog of the Chandra ACIS Survey of M33 (ChASeM33). With a total exposure time of 1.4 Ms, ChASeM33 covers ~70% of the D25 isophote (Rapprox4kpc) of M33 and provides the deepest, most complete, and detailed look at a spiral galaxy in X-rays. The source catalog includes 662 sources, reaches a limiting unabsorbed luminosity of ~2.4x10^(34) erg/s in the 0.35-8.0keV energy band, and contains source positions, source net counts, fluxes and significances in several energy bands, and information on source variability. The analysis challenges posed by ChASeM33 and the techniques adopted to address these challenges are discussed. To constrain the nature of the detected X-ray source, hardness ratios were constructed and spectra were fit for 254 sources, followup MMT spectra of 116 sources were acquired, and cross-correlations with previous X-ray catalogs and other multi-wavelength data were generated. Based on this effort, 183 of the 662 ChASeM33 sources could be identified. Finally, the luminosity function for the detected point sources as well as the one for the X-ray binaries in M33 is presented. The luminosity functions in the soft band (0.5-2.0 keV) and the hard band (2.0-8.0 keV) have a limiting luminosity at the 90% completeness limit of 4.0x10^(34) erg/s and 1.6x10^(35) erg/s (for D=817kpc), respectively, which is significantly lower than what was reported by previous X-ray binary population studies in galaxies more distant than M33. The resulting distribution is consistent with a dominant population of high mass X-ray binaries as would be expected for M33.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا