No Arabic abstract
Humans face the task of balancing dynamic systems near an unstable equilibrium repeatedly throughout their lives. Much research has been aimed at understanding the mechanisms of intermittent control in the context of human balance control. The present paper deals with one of the recent developments in the theory of human intermittent control, namely, the double-well model of noise-driven control activation. We demonstrate that the double-well model can reproduce the whole range of experimentally observed distributions under different conditions. Moreover, we show that a slight change in the noise intensity parameter leads to a sudden shift of the action point distribution shape, that is, a phase transition is observed.
Response delay is an inherent and essential part of human actions. In the context of human balance control, the response delay is traditionally modeled using the formalism of delay-differential equations, which adopts the approximation of fixed delay. However, experimental studies revealing substantial variability, adaptive anticipation, and non-stationary dynamics of response delay provide evidence against this approximation. In this paper, we call for development of principally new mathematical formalism describing human response delay. To support this, we present the experimental data from a simple virtual stick balancing task. Our results demonstrate that human response delay is a widely distributed random variable with complex properties, which can exhibit oscillatory and adaptive dynamics characterized by long-range correlations. Given this, we argue that the fixed-delay approximation ignores essential properties of human response, and conclude with possible directions for future developments of new mathematical notions describing human control.
The anatomically layered structure of a human brain results in leveled functions. In all these levels of different functions, comparison, feedback and imitation are the universal and crucial mechanisms. Languages, symbols and tools play key roles in the development of human brain and entire civilization.
Fluorescent nanodiamonds (FND) are carbon-based nanomaterials that can efficiently incorporate optically active photoluminescent centers such as the nitrogen-vacancy complex, thus making them promising candidates as optical biolabels and drug-delivery agents. FNDs exhibit bright fluorescence without photobleaching combined with high uptake rate and low cytotoxicity. Focusing on FNDs interference with neuronal function, here we examined their effect on cultured hippocampal neurons, monitoring the whole network development as well as the electrophysiological properties of single neurons. We observed that FNDs drastically decreased the frequency of inhibitory (from 1.81 Hz to 0.86 Hz) and excitatory (from 1.61 Hz to 0.68 Hz) miniature postsynaptic currents, and consistently reduced action potential (AP) firing frequency (by 36%), as measured by microelectrode arrays. On the contrary, bursts synchronization was preserved, as well as the amplitude of spontaneous inhibitory and excitatory events. Current-clamp recordings revealed that the ratio of neurons responding with AP trains of high-frequency (fast-spiking) versus neurons responding with trains of low-frequency (slow-spiking) was unaltered, suggesting that FNDs exerted a comparable action on neuronal subpopulations. At the single cell level, rapid onset of the somatic AP (kink) was drastically reduced in FND-treated neurons, suggesting a reduced contribution of axonal and dendritic components while preserving neuronal excitability.
We investigate the influence of intrinsic noise on stable states of a one-dimensional dynamical system that shows in its deterministic version a saddle-node bifurcation between monostable and bistable behaviour. The system is a modified version of the Schlogl model, which is a chemical reaction system with only one type of molecule. The strength of the intrinsic noise is varied without changing the deterministic description by introducing bursts in the autocatalytic production step. We study the transitions between monostable and bistable behavior in this system by evaluating the number of maxima of the stationary probability distribution. We find that changing the size of bursts can destroy and even induce saddle-node bifurcations. This means that a bursty production of molecules can qualitatively change the dynamics of a chemical reaction system even when the deterministic description remains unchanged.
Neural populations exposed to a certain stimulus learn to represent it better. However, the process that leads local, self-organized rules to do so is unclear. We address the question of how can a neural periodic input be learned and use the Differential Hebbian Learning framework, coupled with a homeostatic mechanism to derive two self-consistency equations that lead to increased responses to the same stimulus. Although all our simulations are done with simple Leaky-Integrate and Fire neurons and standard Spiking Time Dependent Plasticity learning rules, our results can be easily interpreted in terms of rates and population codes.