Do you want to publish a course? Click here

Layered structure and leveled function of a human brain

180   0   0.0 ( 0 )
 Added by Jingjing Xu
 Publication date 2018
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

The anatomically layered structure of a human brain results in leveled functions. In all these levels of different functions, comparison, feedback and imitation are the universal and crucial mechanisms. Languages, symbols and tools play key roles in the development of human brain and entire civilization.



rate research

Read More

Neural electromagnetic (EM) signals recorded non-invasively from individual human subjects vary in complexity and magnitude. Nonetheless, variation in neural activity has been difficult to quantify and interpret, due to complex, broad-band features in the frequency domain. Studying signals recorded with magnetoencephalography (MEG) from healthy young adult subjects while in resting and active states, a systematic framework inspired by thermodynamics is applied to neural EM signals. Despite considerable inter-subject variation in terms of spectral entropy and energy across time epochs, data support the existence of a robust and linear relationship defining an effective state equation, with higher energy and lower entropy in the resting state compared to active, consistently across subjects. Mechanisms underlying the emergence of relationships between empirically measured effective state functions are further investigated using a model network of coupled oscillators, suggesting an interplay between noise and coupling strength can account for coherent variation of empirically observed quantities. Taken together, the results show macroscopic neural observables follow a robust, non-trivial conservation rule for energy modulation and information generation.
The cerebral cortex is composed of multiple cortical areas that exert a wide variety of brain functions. Although human brain neurons are genetically and areally mosaic, the three-dimensional structural differences between neurons in different brain areas or between the neurons of different individuals have not been delineated. Here, we report a nanometer-scale geometric analysis of brain tissues of the superior temporal gyrus of 4 schizophrenia and 4 control cases by using synchrotron radiation nanotomography. The results of the analysis and a comparison with results for the anterior cingulate cortex indicated that 1) neuron structures are dissimilar between brain areas and that 2) the dissimilarity varies from case to case. The structural diverseness was mainly observed in terms of the neurite curvature that inversely correlates with the diameters of the neurites and spines. The analysis also revealed the geometric differences between the neurons of the schizophrenia and control cases, suggesting that neuron structure is associated with brain function. The area dependency of the neuron structure and its diverseness between individuals should represent the individuality of brain functions.
Structural covariance analysis is a widely used structural MRI analysis method which characterises the co-relations of morphology between brain regions over a group of subjects. To our knowledge, little has been investigated in terms of the comparability of results between different data sets or the reliability of results over the same subjects in different rescan sessions, image resolutions, or FreeSurf
Functional brain network has been widely studied to understand the relationship between brain organization and behavior. In this paper, we aim to explore the functional connectivity of brain network under a emph{multi-step} cognitive task involving with consecutive behaviors, and further understand the effect of behaviors on the brain organization. The functional brain networks are constructed base on a high spatial and temporal resolution fMRI dataset and analyzed via complex network based approach. We find that at voxel level the functional brain network shows robust small-worldness and scale-free characteristics, while its assortativity and rich-club organization are slightly restricted to order of behaviors performed. More interestingly, the functional connectivity of brain network in activated ROIs strongly correlates with behaviors and behaves obvious differences restricted to order of behaviors performed. These empirical results suggest that the brain organization has the generic properties of small-worldness and scale-free characteristics, and its diverse function connectivity emerging from activated ROIs is strongly driven by these behavioral activities via the plasticity of brain.
The current-source density (CSD) analysis is a widely used method in brain electrophysiology, but this method rests on a series of assumptions, namely that the surrounding extracellular medium is resistive and uniform, and in som
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا