No Arabic abstract
Precision tests of the Standard Model in the Strong and Electroweak sectors play an important role, among the physics goals of LHC experiments. Because of the nature of proton-proton processes, observables based on the measurement of the direction and energy of leptons provide the most precise signatures. In the present paper, we concentrate on the angular distribution of leptons from W to l nu decays in the lepton-pair rest-frame. The vector nature of the intermediate state imposes that distributions are to a good precision described by spherical polynomials of at most second order. We argue, that contrary to general belief often expressed in the literature, the full set of angular coefficients can be measured experimentally, despite the presence in the final state of neutrino escaping detection. There is thus no principle difference with respect to the phenomenology of the Z/gamma to l^+ l^- Drell-Yan process. We show also, that with the proper choice of the coordinate frames, only one coefficient in this polynomial decomposition remains sizable, even in the presence of one or more high p_T jets. The necessary stochastic choice of the frames relies on probabilities independent from any coupling constants. In this way, electroweak effects (dominated by the V-A nature of W couplings to fermions) can be better separated from the ones of strong interactions. The separation is convenient for the measurements interpretation.
We present a comparison of data of lepton angular distributions of Drell-Yan/$Z$ production with the fixed-order pQCD calculations by which the baseline of pQCD effects is illustrated. As for the $Z$ production, we predict that $A_0$ and $A_2$ for $Z$ plus single gluon-jet events are very different from that of $Z$ plus single quark-jet events, allowing a new experimental tool for checking various algorithms which attempt to discriminate quark jets from gluon jets. Using an intuitive geometric approach, we show that the violation of the Lam-Tung relation, appearing at large transverse-momentum region, is attributed to the presence of a non-coplanarity effect. This interpretation is consistent with the appearance of violation beyond LO-QCD effect.
We consider QCD radiative corrections to $W^+W^-$ production at the LHC and present the first fully differential predictions for this process at next-to-next-to-leading order (NNLO) in perturbation theory. Our computation consistently includes the leptonic decays of the $W$ bosons, taking into account spin correlations, off-shell effects and non-resonant contributions. Detailed predictions are presented for the different-flavour channel $pptomu^+e^- u_mu {bar u}_e+X$ at $sqrt{s}=8$ and $13$ TeV. In particular, we discuss fiducial cross sections and distributions in the presence of standard selection cuts used in experimental $W^+W^-$ and $Hto W^+W^-$ analyses at the LHC. The inclusive $W^+W^-$ cross section receives large NNLO corrections, and, due to the presence of a jet veto, typical fiducial cuts have a sizeable influence on the behaviour of the perturbative expansion. The availability of differential NNLO predictions, both for inclusive and fiducial observables, will play an important role in the rich physics programme that is based on precision studies of $W^+W^-$ signatures at the LHC.
Among the physics goals of LHC experiments, precision tests of the Standard Model in the Strong and Electroweak sectors play an important role. Because of nature of the proton-proton processes, observables based on the measurement of the direction and energy of leptons provide the most precise signatures. In the present paper, we concentrate on the angular distribution of Drell-Yan process leptons, in the lepton-pair rest-frame. The vector nature of the intermediate state imposes that distributions are to a good precision described by spherical polynomials of at most second order. We show that with the proper choice of the coordinate frames, only one coefficient in this polynomial decomposition remains sizable, even in the presence of one or two high $p_T$ jets. The necessary stochastic choice of the frames relies on probabilities independent from any coupling constants. This remains true when one or two partons accompany the lepton pairs. In this way electroweak effects can be better separated from strong interaction ones for the benefit of the interpretation of the measurements. Our study exploits properties of single gluon emission matrix elements which are clearly visible if a conveniently chosen form of their representation is used. We rely also on distributions obtained from matrix element based Monte Carlo generated samples of events with two leptons and up to two additional partons in test samples. Incoming colliding protons partons are distributed accordingly to PDFs and are strictly collinear to the corresponding beams.
We study the observability for a heavy Majorana neutrino N along with a new charged gauge boson W at the LHC. We emphasize the complementarity of these two particles in their production and decay to unambiguously determine their properties. We show that the Majorana nature of N can be verified by the lepton-number violating like-sign dilepton process, and by polar and azimuthal angular distributions. The chirality of the W coupling to leptons and to quarks can be determined by a polar angle distribution in the reconstructed frame and an azimuthal angle distribution.
We present the first study of the production of a Standard Model Higgs boson at a lepton collider in association with a pair of W bosons, $e^+_{} e^-_{} to W^+_{} W^-_{} H$, in the inverse seesaw model. Taking into account all relevant experimental and theoretical constraints, we find sizable effects due to the additional heavy neutrinos up to -38% on the total cross-section at a center-of-mass energy of 3 TeV, and even up to -66% with suitable cuts. This motivates a detailed sensitivity analysis of the process $e^+_{} e^-_{} to W^+_{} W^-_{} H$ as it could provide a new, very competitive experimental probe of low-scale neutrino mass models.