Do you want to publish a course? Click here

$W^+W^-$ production at the LHC: fiducial cross sections and distributions in NNLO QCD

82   0   0.0 ( 0 )
 Added by Stefan Kallweit
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We consider QCD radiative corrections to $W^+W^-$ production at the LHC and present the first fully differential predictions for this process at next-to-next-to-leading order (NNLO) in perturbation theory. Our computation consistently includes the leptonic decays of the $W$ bosons, taking into account spin correlations, off-shell effects and non-resonant contributions. Detailed predictions are presented for the different-flavour channel $pptomu^+e^- u_mu {bar u}_e+X$ at $sqrt{s}=8$ and $13$ TeV. In particular, we discuss fiducial cross sections and distributions in the presence of standard selection cuts used in experimental $W^+W^-$ and $Hto W^+W^-$ analyses at the LHC. The inclusive $W^+W^-$ cross section receives large NNLO corrections, and, due to the presence of a jet veto, typical fiducial cuts have a sizeable influence on the behaviour of the perturbative expansion. The availability of differential NNLO predictions, both for inclusive and fiducial observables, will play an important role in the rich physics programme that is based on precision studies of $W^+W^-$ signatures at the LHC.



rate research

Read More

We report on the first computation of the next-to-next-to-leading order (NNLO) QCD corrections to $W^{pm}Z$ production in proton collisions. We consider both the inclusive production of on-shell $W^{pm}Z$ pairs at LHC energies and the total $W^{pm}Z$ rates including off-shell effects of the $W$ and $Z$ bosons. In the off-shell computation, the invariant mass of the lepton pairs from the $Z$ boson decay is required to be in a given mass window, and the results are compared with the corresponding measurements obtained by the ATLAS and CMS collaborations. The NNLO corrections range from 8% at $sqrt{s}$=7 TeV to 11% at $sqrt{s}$=14 TeV and significantly improve the agreement with the LHC data at $sqrt{s}$=7 and 8 TeV.
78 - E. Richter-Was , Z. Was 2016
Precision tests of the Standard Model in the Strong and Electroweak sectors play an important role, among the physics goals of LHC experiments. Because of the nature of proton-proton processes, observables based on the measurement of the direction and energy of leptons provide the most precise signatures. In the present paper, we concentrate on the angular distribution of leptons from W to l nu decays in the lepton-pair rest-frame. The vector nature of the intermediate state imposes that distributions are to a good precision described by spherical polynomials of at most second order. We argue, that contrary to general belief often expressed in the literature, the full set of angular coefficients can be measured experimentally, despite the presence in the final state of neutrino escaping detection. There is thus no principle difference with respect to the phenomenology of the Z/gamma to l^+ l^- Drell-Yan process. We show also, that with the proper choice of the coordinate frames, only one coefficient in this polynomial decomposition remains sizable, even in the presence of one or more high p_T jets. The necessary stochastic choice of the frames relies on probabilities independent from any coupling constants. In this way, electroweak effects (dominated by the V-A nature of W couplings to fermions) can be better separated from the ones of strong interactions. The separation is convenient for the measurements interpretation.
The four-lepton decay mode of the Higgs boson allows for a clean kinematic reconstruction, thereby enabling precision studies of the Higgs boson properties and of its production dynamics. We compute the NNLO QCD corrections to fiducial cross sections relevant to this decay mode in the gluon-fusion production of a Higgs boson in association with a hadronic jet, and study the impact of the QCD corrections on the fiducial acceptance factors in inclusive Higgs and Higgs-plus-jet production. We investigate in detail the different definitions used in the ATLAS and CMS measurements to define the fiducial cross sections. Differences in the lepton isolation prescription are found to have a sizeable impact on the higher order corrections to the fiducial acceptance factors.
We compute the NLO QCD corrections to the loop-induced gluon fusion contribution in $W^+W^-$ production at the LHC. We consider the full leptonic process $ppto ell^+ell^{prime, -} u_{ell}{bar u}_{ell^prime}+X$, by including resonant and non-resonant diagrams, spin correlations and off-shell effects. Quark-gluon partonic channels are included for the first time in the calculation, and our results are combined with NNLO predictions to the quark annihilation channel at the fully differential level. The computed corrections, which are formally of ${cal O}(alpha_{mathrm{S}}^3)$, increase the NNLO cross section by only about 2%, but have an impact on the shapes of kinematical distributions, in part due to the jet veto, which is usually applied to reduce the top-quark background. Our results, supplemented with NLO EW effects, provide the most advanced fixed-order predictions available to date for this process, and are compared with differential ATLAS data at $sqrt{s}=$ 13 TeV.
We study the impact of anomalous gauge boson and fermion couplings on the production of $W^+W^-$ pairs at potential future LHC upgrades and estimate the sensitivity at $sqrt{S}=14$ TeV with $3~ab^{-1}$ and $sqrt{S}=27$ TeV with $15~ab^{-1}$. A general technique for including NLO QCD effects in effective field theory (EFT) fits to kinematic distributions is presented, and numerical results are given for $sqrt{S}=13$ TeV $W^+W^-$ production. Our method allows fits to anomalous couplings at NLO accuracy in any EFT basis and has been implemented in a publicly available version of the POWHEG-BOX. Analytic expressions for the $K$-factors relevant for $13$ TeV total cross sections are given for the HISZ and Warsaw EFT bases and differential $K$-factors can be obtained using the supplemental material. Our study demonstrates the necessity of including anomalous $Z$- fermion couplings in the extraction of limits on anomalous 3-gauge-boson couplings.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا