Do you want to publish a course? Click here

An introduction to integrable techniques for one-dimensional quantum systems

278   0   0.0 ( 0 )
 Added by Fabio Franchini
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

This monograph introduces the reader to basic notions of integrable techniques for one-dimensional quantum systems. In a pedagogical way, a few examples of exactly solvable models are worked out to go from the coordinate approach to the Algebraic Bethe Ansatz, with some discussion on the finite temperature thermodynamics. The aim is to provide the instruments to approach more advanced books or to allow for a critical reading of research articles and the extraction of useful information from them. We describe the solution of the anisotropic XY spin chain; of the Lieb-Liniger model of bosons with contact interaction at zero and finite temperature; and of the XXZ spin chain, first in the coordinate and then in the algebraic approach. To establish the connection between the latter and the solution of two dimensional classical models, we also introduce and solve the 6-vertex model. Finally, the low energy physics of these integrable models is mapped into the corresponding conformal field theory. Through its style and the choice of topics, this book tries to touch all fundamental ideas behind integrability and is meant for students and researchers interested either in an introduction to later delve in the advance aspects of Bethe Ansatz or in an overview of the topic for broadening their culture.



rate research

Read More

We study the out-of-equilibrium dynamics of one-dimensional quantum Ising-like systems, arising from sudden quenches of the Hamiltonian parameter $g$ driving quantum transitions between disordered and ordered phases. In particular, we consider quenches to values of $g$ around the critical value $g_c$, and mainly address the question whether, and how, the quantum transition leaves traces in the evolution of the transverse and longitudinal magnetizations during such a deep out-of-equilibrium dynamics. We shed light on the emergence of singularities in the thermodynamic infinite-size limit, likely related to the integrability of the model. Finite systems in periodic and open boundary conditions develop peculiar power-law finite-size scaling laws related to revival phenomena, but apparently unrelated to the quantum transition, because their main features are generally observed in quenches to generic values of $g$. We also investigate the effects of dissipative interactions with an environment, modeled by a Lindblad equation with local decay and pumping dissipation operators within the quadratic fermionic model obtainable by a Jordan-Wigner mapping. Dissipation tends to suppress the main features of the unitary dynamics of closed systems. We finally address the effects of integrability breaking, due to further lattice interactions, such as in anisotropic next-to-nearest neighbor Ising (ANNNI) models. We show that some qualitative features of the post-quench dynamics persist, in particular the different behaviors when quenching to quantum ferromagnetic and paramagnetic phases, and the revival phenomena due to the finite size of the system.
551 - M. B. Hastings 2018
We prove an area law for the entanglement entropy in gapped one dimensional quantum systems. The bound on the entropy grows surprisingly rapidly with the correlation length; we discuss this in terms of properties of quantum expanders and present a conjecture on completely positive maps which may provide an alternate way of arriving at an area law. We also show that, for gapped, local systems, the bound on Von Neumann entropy implies a bound on R{e}nyi entropy for sufficiently large $alpha<1$ and implies the ability to approximate the ground state by a matrix product state.
Free or integrable theories are usually considered to be too constrained to thermalize. For example, the retarded two-point function of a free field, even in a thermal state, does not decay to zero at long times. On the other hand, the magnetic susceptibility of the critical transverse field Ising is known to thermalize, even though that theory can be mapped by a Jordan-Wigner transformation to that of free fermions. We reconcile these two statements by clarifying under which conditions conserved charges can prevent relaxation at the level of linear response and how such obstruction can be overcome. In particular, we give a necessary condition for the decay of retarded Greens functions. We give explicit examples of composite operators in free theories that nevertheless satisfy that condition and therefore do thermalize. We call this phenomenon the Operator Thermalization Hypothesis as a converse to the Eigenstate Thermalization Hypothesis.
149 - Spyros Sotiriadis 2016
We study quench dynamics and equilibration in one-dimensional quantum hydrodynamics, which provides effective descriptions of the density and velocity fields in gapless quantum gases. We show that the information content of the large time steady state is inherently connected to the presence of ballistically moving localised excitations. When such excitations are present, the system retains memory of initial correlations up to infinite times, thus evading decoherence. We demonstrate this connection in the context of the Luttinger model, the simplest quantum hydrodynamic model, and in the quantum KdV equation. In the standard Luttinger model, memory of all initial correlations is preserved throughout the time evolution up to infinitely large times, as a result of the purely ballistic dynamics. However nonlinear dispersion or interactions, when separately present, lead to spreading and delocalisation that suppress the above effect by eliminating the memory of non-Gaussian correlations. We show that, for any initial state that satisfies sufficient clustering of correlations, the steady state is Gaussian in terms of the bosonised or fermionised fields in the dispersive or interacting case respectively. On the other hand, when dispersion and interaction are simultaneously present, a semiclassical approximation suggests that localisation is restored as the two effects compensate each other and solitary waves are formed. Solitary waves, or simply solitons, are experimentally observed in quantum gases and theoretically predicted based on semiclassical approaches, but the question of their stability at the quantum level remains to a large extent an open problem. We give a general overview on the subject and discuss the relevance of our findings to general out of equilibrium problems.
The theory of small-system thermodynamics was originally developed to extend the laws of thermodynamics to length scales of nanometers. Here we review this nanothermodynamics, and stress how it also applies to large systems that subdivide into a heterogeneous distribution of internal subsystems that we call regions. We emphasize that the true thermal equilibrium of most systems often requires that these regions are in the fully-open generalized ensemble, with a distribution of region sizes that is not externally constrained, which we call the nanocanonical ensemble. We focus on how nanothermodynamics impacts the statistical mechanics of specific models. One example is an ideal gas of indistinguishable atoms in a large volume that subdivides into an ensemble of small regions of variable volume, with separate regions containing atoms that are distinguishable from those in other regions. Combining such subdivided regions yields the correct entropy of mixing, avoiding Gibbs paradox without resorting to macroscopic quantum symmetry for semi-classical particles. Other models are based on Ising-like spins (binary degrees of freedom), which are solved analytically in one-dimension, making them suitable examples for introductory courses in statistical physics. A key result is to quantify the net increase in entropy when large systems subdivide into small regions of variable size. Another result is to show similarity in the equilibrium properties of a two-state model in the nanocanonical ensemble and a three-state model in the canonical ensemble. Thus, emergent phenomena may alter the thermal behavior of microscopic models, and the correct ensemble is necessary for accurate predictions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا