Do you want to publish a course? Click here

Thermalization/Relaxation in integrable and free field theories: an Operator Thermalization Hypothesis

81   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Free or integrable theories are usually considered to be too constrained to thermalize. For example, the retarded two-point function of a free field, even in a thermal state, does not decay to zero at long times. On the other hand, the magnetic susceptibility of the critical transverse field Ising is known to thermalize, even though that theory can be mapped by a Jordan-Wigner transformation to that of free fermions. We reconcile these two statements by clarifying under which conditions conserved charges can prevent relaxation at the level of linear response and how such obstruction can be overcome. In particular, we give a necessary condition for the decay of retarded Greens functions. We give explicit examples of composite operators in free theories that nevertheless satisfy that condition and therefore do thermalize. We call this phenomenon the Operator Thermalization Hypothesis as a converse to the Eigenstate Thermalization Hypothesis.



rate research

Read More

We discuss eigenstate correlations for ergodic, spatially extended many-body quantum systems, in terms of the statistical properties of matrix elements of local observables. While the eigenstate thermalization hypothesis (ETH) is known to give an excellent description of these quantities, the butterfly effect implies structure beyond ETH. We determine the universal form of this structure at long distances and small eigenvalue separations for Floquet systems. We use numerical studies of a Floquet quantum circuit to illustrate both the accuracy of ETH and the existence of our predicted additional correlations.
129 - Zhihao Lan , Stephen Powell 2017
We use exact diagonalization to study the eigenstate thermalization hypothesis (ETH) in the quantum dimer model on the square and triangular lattices. Due to the nonergodicity of the local plaquette-flip dynamics, the Hilbert space, which consists of highly constrained close-packed dimer configurations, splits into sectors characterized by topological invariants. We show that this has important consequences for ETH: We find that ETH is clearly satisfied only when each topological sector is treated separately, and only for moderate ratios of the potential and kinetic terms in the Hamiltonian. By contrast, when the spectrum is treated as a whole, ETH breaks down on the square lattice, and apparently also on the triangular lattice. These results demonstrate that quantum dimer models have interesting thermalization dynamics.
Quantum effects in material systems are often pronounced at low energies and become insignificant at high temperatures. We find that, perhaps counterintuitively, certain quantum effects may follow the opposite route and become sharp when extrapolated to high temperature within a classical liquid phase. In the current work, we suggest basic quantum bounds on relaxation (and thermalization) times, examine kinetic theory by taking into account such possible fundamental quantum time scales, find new general equalities connecting semi-classical dynamics and thermodynamics to Plancks constant, and compute current correlation functions. Our analysis suggests that, on average, the extrapolated high temperature dynamical viscosity of general liquids may tend to a value set by the product of the particle number density ${sf n}$ and Plancks constant $h$. We compare this theoretical result with experimental measurements of an ensemble of 23 metallic fluids where this seems to indeed be the case. The extrapolated high temperature viscosity of each of these liquids $eta$ divided (for each respective fluid by its value of ${sf n} h$) veers towards a Gaussian with an ensemble average value that is close to unity up to an error of size $0.6 %$. Inspired by the Eigenstate Thermalization Hypothesis, we suggest a relation between the lowest equilibration temperature to the melting or liquidus temperature and discuss a possible corollary concerning the absence of finite temperature ideal glass transitions. We suggest a general quantum mechanical derivation for the viscosity of glasses at general temperatures. We invoke similar ideas to discuss other transport properties and demonstrate how simple behaviors including resistivity saturation and linear $T$ resistivity may appear very naturally. Our approach suggests that minimal time lags may be present in fluid dynamics.
Many phases of matter, including superconductors, fractional quantum Hall fluids and spin liquids, are described by gauge theories with constrained Hilbert spaces. However, thermalization and the applicability of quantum statistical mechanics has primarily been studied in unconstrained Hilbert spaces. In this article, we investigate whether constrained Hilbert spaces permit local thermalization. Specifically, we explore whether the eigenstate thermalization hypothesis (ETH) holds in a pinned Fibonacci anyon chain, which serves as a representative case study. We first establish that the constrained Hilbert space admits a notion of locality, by showing that the influence of a measurement decays exponentially in space. This suggests that the constraints are no impediment to thermalization. We then provide numerical evidence that ETH holds for the diagonal and off-diagonal matrix elements of various local observables in a generic disorder-free non-integrable model. We also find that certain non-local observables obey ETH.
107 - N. Sedlmayr , J. Ren , F. Gebhard 2012
We study thermalization in a one-dimensional quantum system consisting of a noninteracting fermionic chain with each site of the chain coupled to an additional bath site. Using a density matrix renormalization group algorithm we investigate the time evolution of observables in the chain after a quantum quench. For low densities we show that the intermediate time dynamics can be quantitatively described by a system of coupled equations of motion. For higher densities our numerical results show a prethermalization for local observables at intermediate times and a full thermalization to the grand canonical ensemble at long times. For the case of a weak bath-chain coupling we find, in particular, a Fermi momentum distribution in the chain in equilibrium in spite of the seemingly oversimplified bath in our model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا