No Arabic abstract
There has been rapidly growing interest in hybrid quantum devices involving a solid-state spin and a macroscopic mechanical oscillator. Such hybrid devices create exciting opportunities to mediate interactions between disparate qubits and to explore the quantum regime of macroscopic mechanical objects. In particular, a system consisting of the nitrogen-vacancy defect center in diamond coupled to a high quality factor mechanical oscillator is an appealing candidate for such a hybrid quantum device, as it utilizes the highly coherent and versatile spin properties of the defect center. In this paper, we will review recent experimental progress on diamond-based hybrid quantum devices in which the spin and orbital dynamics of single defects are driven by the motion of a mechanical oscillator. In addition, we discuss prospective applications for this device, including long range, phonon-mediated spin-spin interactions, and phonon cooling in the quantum regime. We conclude the review by evaluating the experimental limitations of current devices and identifying alternative device architectures that may reach the strong coupling regime.
Nanomechanical sensors and quantum nanosensors are two rapidly developing technologies that have diverse interdisciplinary applications in biological and chemical analysis and microscopy. For example, nanomechanical sensors based upon nanoelectromechanical systems (NEMS) have demonstrated chip-scale mass spectrometry capable of detecting single macromolecules, such as proteins. Quantum nanosensors based upon electron spins of negatively-charged nitrogen-vacancy (NV) centers in diamond have demonstrated diverse modes of nanometrology, including single molecule magnetic resonance spectroscopy. Here, we report the first step towards combining these two complementary technologies in the form of diamond nanomechanical structures containing NV centers. We establish the principles for nanomechanical sensing using such nano-spin-mechanical sensors (NSMS) and assess their potential for mass spectrometry and force microscopy. We predict that NSMS are able to provide unprecedented AC force images of cellular biomechanics and to, not only detect the mass of a single macromolecule, but also image its distribution. When combined with the other nanometrology modes of the NV center, NSMS potentially offer unparalleled analytical power at the nanoscale.
Generating robust entanglement among solid-state spins is key for applications in quantum information processing and precision sensing. We show here a dissipative approach to generate such entanglement among the hyperfine coupled electron nuclear spins using the rapid optical decay of electronic excited states. The combined dark state interference effects of the optical and microwave driving fields in the presence of spontaneous emission from the short-lived excited state leads to a dissipative formation of an entangled steady state. We show that the dissipative entanglement is generated for any initial state conditions of the spins and is resilient to external field fluctuations. We analyze the scheme both for continuous and pulsed driving fields in the presence of realistic noise sources.
Nanomagnetometry using the nitrogen-vacancy (NV) centre in diamond has attracted a great deal of interest because of the combined features of room temperature operation, nanoscale resolution and high sensitivity. One of the important goals for nano-magnetometry is to be able to detect nanoscale nuclear magnetic resonance (NMR) in individual molecules. Our theoretical analysis shows how a single molecule at the surface of diamond, with characteristic NMR frequencies, can be detected using a proximate NV centre on a time scale of order seconds with nanometer precision. We perform spatio-temporal resolution optimisation and also outline paths to greater sensitivity. In addition, the method is suitable for application in low and relatively inhomogeneous background magnetic fields in contrast to both conventional liquid and solid state NMR spectroscopy.
Topological numbers can characterize the transition between different topological phases, which are not described by Landaus paradigm of symmetry breaking. Since the discovery of quantum Hall effect, more topological phases have been theoretically predicted and experimentally verified. However, it is still an experimental challenge to directly measure the topological number of various predicted topological phases. In this paper, we demonstrate quantum simulation of topological phase transition of a quantum wire (QW) using a single nitrogen-vacancy (NV) center in diamond. Deploying quantum algorithm of finding eigenvalues, we can reliably extract both the dispersion relations and topological numbers.
Under ambient conditions, spin impurities in solid-state systems are found in thermally-mixed states and are optically dark, i.e., the spin states cannot be optically controlled. Nitrogen-vacancy (NV) centers in diamond are an exception in that the electronic spin states are bright, i.e., they can be polarized by optical pumping, coherently manipulated with spin-resonance techniques, and read out optically, all at room temperature. Here we demonstrate a dressed-state, double-resonance scheme to transfer polarization from bright NV electronic spins to dark substitutional-Nitrogen (P1) electronic spins in diamond. This polarization-transfer mechanism could be used to cool a mesoscopic bath of dark spins to near-zero temperature, thus providing a resource for quantum information and sensing, and aiding studies of quantum effects in many-body spin systems.