Do you want to publish a course? Click here

Intelligent Pinning Based Cooperative Secondary Control of Distributed Generators for Microgrid in Islanding Operation Mode

59   0   0.0 ( 0 )
 Added by Saeed Manaffam
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Motivated by the fact that the location(s) and structural properties of the pinning node(s) affect the algebraic connectivity of a network with respect to the reference value and thereby, its dynamic performance, this paper studies the application of intelligent single and multiple pinning of distributed cooperative secondary control of distributed generators (DGs) in islanded microgrid operation. It is shown that the intelligent selection of a pinning set based on the degree of connectivity and distance of leader DG(s) from the rest of the network improves the transient performance for microgrid voltage and frequency regulation. The efficacy of the distributed control strategy based on the proposed algorithms is illustrated via numerical results simulating typical scenarios for a variety of microgrid configurations.



rate research

Read More

Motivated by the need for fast synchronized operation of power microgrids, we analyze the problem of single and multiple pinning in networked systems. We derive lower and upper bounds on the algebraic connectivity of the network with respect to the reference signal. These bounds are utilized to devise a suboptimal algorithm with polynomial complexity to find a suitable set of nodes to pin the network effectively and efficiently. The results are applied to secondary voltage pinning control design for a microgrid in islanded operation mode. Comparisons with existing single and multiple pinning strategies clearly demonstrates the efficacy of the obtained results.
Forming (hybrid) AC/DC microgrids (MGs) has become a promising manner for the interconnection of various kinds of distributed generators that are inherently AC or DC electric sources. This paper addresses the distributed asynchronous power control problem of hybrid microgrids, considering imperfect communication due to non-identical sampling rates and communication delays. To this end, we first formulate the optimal power control problem of MGs and devise a synchronous algorithm. Then, we analyze the impact of asynchrony on optimal power control and propose an asynchronous iteration algorithm based on the synchronous version. By introducing a random clock at each iteration, different types of asynchrony are fitted into a unified framework, where the asynchronous algorithm is converted into a fixed-point problem based on the operator splitting method, leading to a convergence proof. We further provide an upper bound estimation of the time delay in the communication. Moreover, the real-time implementation of the proposed algorithm in both AC and DC MGs is introduced. By taking the power system as a solver, the controller is simplified by reducing one order and the power loss can be considered. Finally, a benchmark MG is utilized to verify the effectiveness and advantages of the proposed algorithm.
97 - Qimin Xu , Bo Yang , Cailian Chen 2017
Due to the limited generation and finite inertia, microgrid suffers from the large frequency and voltage deviation which can lead to system collapse. Thus, reliable load shedding to keep frequency stable is required. Wireless network, benefiting from the high flexibility and low deployment cost, is considered as a promising technology for fine-grained management. In this paper, for balancing the supply-demand and reducing the load-shedding amount, a distributed load shedding solution via wireless network is proposed. Firstly, active power coordination of different priority loads is formulated as an optimisation problem. To solve it, a distributed load shedding algorithm based on subgradient method (DLSS) is developed for gradually shedding loads. Using this method, power compensation can be utilised and has more time to lower the power deficit so as to reduce the load-shedding amount. Secondly, to increase the response rate and enhance the reliability of our method, a multicast metropolis schedule based on TDMA (MMST) is developed. In this protocol, time slots are dedicatedly allocated and a checking and retransmission mechanism is utilised. Finally, the proposed solution is evaluated by NS3-Matlab co-simulator. The numerical results demonstrate the feasibility and effectiveness of our solution.
Recently we studied communication delay in distributed control of untimed discrete-event systems based on supervisor localization. We proposed a property called delay-robustness: the overall system behavior controlled by distributed controllers with communication delay is logically equivalent to its delay-free counterpart. In this paper we extend our previous work to timed discrete-event systems, in which communication delays are counted by a special clock event {it tick}. First, we propose a timed channel model and define timed delay-robustness; for the latter, a polynomial verification procedure is presented. Next, if the delay-robust property does not hold, we introduce bounded delay-robustness, and present an algorithm to compute the maximal delay bound (measured by number of ticks) for transmitting a channeled event. Finally, we demonstrate delay-robustness on the example of an under-load tap-changing transformer.
96 - Xiaoyu Wu , Yin Xu , Xiangyu Wu 2018
This paper presents a two-layer, four-level distributed control method for networked microgrid (NMG) systems, taking into account the proprietary nature of microgrid (MG) owners. The proposed control architecture consists of a MG-control layer and a NMG-control layer. In the MG layer, the primary and distrib-uted secondary control realize accurate power sharing among distributed generators (DGs) and the frequency/voltage reference following within each MG. In the NMG layer, the tertiary control enables regulation of the power flowing through the point of common coupling (PCC) of each MG in a decentralized manner. Furthermore, the distributed quaternary control restores system frequency and critical bus voltage to their nominal values and ensures accurate power sharing among MGs. A small-signal dynamic model is developed to evaluate dynamic performance of NMG systems with the proposed control method. Time-domain simulations as well as experiments on NMG test systems are performed to validate the effectiveness of the proposed method.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا