Do you want to publish a course? Click here

Gribov horizon and Gribov copies effect in lattice Coulomb gauge

82   0   0.0 ( 0 )
 Added by Giuseppe Burgio
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

Following a recent proposal by Cooper and Zwanziger we investigate via $SU(2)$ lattice simulations the effect on the Coulomb gauge propagators and on the Gribov-Zwanziger confinement mechanism of selecting the Gribov copy with the smallest non-trivial eigenvalue of the Faddeev-Popov operator, i.e.~the one closest to the Gribov horizon. Although such choice of gauge drives the ghost propagator towards the prediction of continuum calculations, we find that it actually overshoots the goal. With increasing computer time, we observe that Gribov copies with arbitrarily small eigenvalues can be found. For such a method to work one would therefore need further restrictions on the gauge condition to isolate the physically relevant copies, since e.g.~the Coulomb potential $V_C$ defined through the Faddeev-Popov operator becomes otherwise physically meaningless. Interestingly, the Coulomb potential alternatively defined through temporal link correlators is only marginally affected by the smallness of the eigenvalues.



rate research

Read More

Lattice results for the gluon propagator in SU(2) pure gauge theory obtained on large lattices are presented. Simulated annealing is used throughout to fix the Landau gauge. We concentrate on checks for Gribov copy effects and for scaling properties. Our findings are similar to the ones in the SU(3) case, supporting the decoupling-type infrared behaviour of the gluon propagator.
We study the problem of the Landau gauge fixing in the case of the SU(2) lattice gauge theory. We show that the probability to find a lattice Gribov copy increases considerably when the physical size of the lattice exceeds some critical value $approx2.75/sqrt{sigma}$, almost independent of the lattice spacing. The impact of the choice of the copy on Green functions is presented. We confirm that the ghost propagator depends on the choice of the copy, this dependence decreasing for increasing volumes above the critical one. The gluon propagator as well as the gluonic three-point functions are insensitive to choice of the copy (within present statistical errors). Finally we show that gauge copies which have the same value of the minimisation functional ($int d^4x (A^a_mu)^2$) are equivalent, up to a global gauge transformation, and yield the same Green functions.
Complex monopole solutions exist in the three dimensional Georgi-Glashow model with the Chern-Simons term. They dominate the path integral and disorder the Higgs vacuum. Gribov copies of the vacuum and monopole configurations are studied in detail.
We study the Gribov problem in four-dimensional topological Yang-Mills theories following the Baulieu-Singer approach in the (anti-)self-dual Landau gauges. This is a gauge-fixed approach that allows to recover the topological spectrum, as first constructed by Witten, by means of an equivariant (or constrained) BRST cohomology. As standard gauge-fixed Yang-Mills theories suffer from the gauge copy (Gribov) ambiguity, one might wonder if and how this has repercussions for this analysis. The resolution of the small (infinitesimal) gauge copies, in general, affects the dynamics of the underlying theory. In particular, treating the Gribov problem for the standard Landau gauge condition in non-topological Yang-Mills theories strongly affects the dynamics of the theory in the infrared. In the current paper, although the theory is investigated with the same gauge condition, the effects of the copies turn out to be completely different. In other words: in both cases, the copies are there, but the effects are very different. As suggested by the tree-level exactness of the topological model in this gauge choice, the Gribov copies are shown to be inoffensive at the quantum level. To be more precise, following Gribov, we discuss the path integral restriction to the Gribov horizon. The associated gap equation, which fixes the so-called Gribov parameter, is however shown to only possess a trivial solution, making the restriction obsolete. We relate this to the absence of radiative corrections in both gauge and ghost sectors. We give further evidence by employing the renormalization group which shows that, for this kind of topological model, the gap equation indeed forbids the introduction of a massive Gribov parameter.
We prove a lower bound for the smallest nonzero eigenvalue of the Landau-gauge Faddeev-Popov matrix in Yang-Mills theories. The bound is written in terms of the smallest nonzero momentum on the lattice and of a parameter characterizing the geometry of the first Gribov region. This allows a simple and intuitive description of the infinite-volume limit in the ghost sector. In particular, we show how nonperturbative effects may be quantified by the rate at which typical thermalized and gauge-fixed configurations approach the Gribov horizon. Our analytic results are verified numerically in the SU(2) case through an informal, free and easy, approach. This analysis provides the first concrete explanation of why the so-called scaling solution of the Dyson-Schwinger equations is not observed in lattice studies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا