Do you want to publish a course? Click here

Complex Monopoles and Gribov Copies

317   0   0.0 ( 0 )
 Added by Yutaka Hosotani
 Publication date 1998
  fields
and research's language is English




Ask ChatGPT about the research

Complex monopole solutions exist in the three dimensional Georgi-Glashow model with the Chern-Simons term. They dominate the path integral and disorder the Higgs vacuum. Gribov copies of the vacuum and monopole configurations are studied in detail.



rate research

Read More

Following a recent proposal by Cooper and Zwanziger we investigate via $SU(2)$ lattice simulations the effect on the Coulomb gauge propagators and on the Gribov-Zwanziger confinement mechanism of selecting the Gribov copy with the smallest non-trivial eigenvalue of the Faddeev-Popov operator, i.e.~the one closest to the Gribov horizon. Although such choice of gauge drives the ghost propagator towards the prediction of continuum calculations, we find that it actually overshoots the goal. With increasing computer time, we observe that Gribov copies with arbitrarily small eigenvalues can be found. For such a method to work one would therefore need further restrictions on the gauge condition to isolate the physically relevant copies, since e.g.~the Coulomb potential $V_C$ defined through the Faddeev-Popov operator becomes otherwise physically meaningless. Interestingly, the Coulomb potential alternatively defined through temporal link correlators is only marginally affected by the smallness of the eigenvalues.
Recently, based on a new procedure to quantize the theory in the continuum, it was argued that Singers theorem points towards the existence of a Yang-Mills ensemble. In the new approach, the gauge fields are mapped into an auxiliary field space used to separately fix the gauge on different sectors labeled by center vortices. In this work, we study this procedure in more detail. We provide examples of configurations belonging to sectors labeled by center vortices and discuss the existence of nonabelian degrees of freedom. Then, we discuss the importance of the mapping injectivity, and show that this property holds infinitesimally for typical configurations of the vortex-free sector and for the simplest example in the one-vortex sector. Finally, we show that these configurations are free from Gribov copies.
We study the Gribov problem in four-dimensional topological Yang-Mills theories following the Baulieu-Singer approach in the (anti-)self-dual Landau gauges. This is a gauge-fixed approach that allows to recover the topological spectrum, as first constructed by Witten, by means of an equivariant (or constrained) BRST cohomology. As standard gauge-fixed Yang-Mills theories suffer from the gauge copy (Gribov) ambiguity, one might wonder if and how this has repercussions for this analysis. The resolution of the small (infinitesimal) gauge copies, in general, affects the dynamics of the underlying theory. In particular, treating the Gribov problem for the standard Landau gauge condition in non-topological Yang-Mills theories strongly affects the dynamics of the theory in the infrared. In the current paper, although the theory is investigated with the same gauge condition, the effects of the copies turn out to be completely different. In other words: in both cases, the copies are there, but the effects are very different. As suggested by the tree-level exactness of the topological model in this gauge choice, the Gribov copies are shown to be inoffensive at the quantum level. To be more precise, following Gribov, we discuss the path integral restriction to the Gribov horizon. The associated gap equation, which fixes the so-called Gribov parameter, is however shown to only possess a trivial solution, making the restriction obsolete. We relate this to the absence of radiative corrections in both gauge and ghost sectors. We give further evidence by employing the renormalization group which shows that, for this kind of topological model, the gap equation indeed forbids the introduction of a massive Gribov parameter.
In this paper the arising of Gribov copies both in Landau and Coulomb gauges in regions with non-trivial topologies but flat metric, (such as closed tubes S1XD2, or RXT2) will be analyzed. Using a novel generalization of the hedgehog ansatz beyond spherical symmetry, analytic examples of Gribov copies of the vacuum will be constructed. Using such ansatz, we will also construct the elliptic Gribov pendulum. The requirement of absence of Gribov copies of the vacuum satisfying the strong boundary conditions implies geometrical constraints on the shapes and sizes of the regions with non-trivial topologies.
We study the problem of the Landau gauge fixing in the case of the SU(2) lattice gauge theory. We show that the probability to find a lattice Gribov copy increases considerably when the physical size of the lattice exceeds some critical value $approx2.75/sqrt{sigma}$, almost independent of the lattice spacing. The impact of the choice of the copy on Green functions is presented. We confirm that the ghost propagator depends on the choice of the copy, this dependence decreasing for increasing volumes above the critical one. The gluon propagator as well as the gluonic three-point functions are insensitive to choice of the copy (within present statistical errors). Finally we show that gauge copies which have the same value of the minimisation functional ($int d^4x (A^a_mu)^2$) are equivalent, up to a global gauge transformation, and yield the same Green functions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا