Do you want to publish a course? Click here

Optical properties of $A$Fe$_mathbf{2}$As$_mathbf{2}$ ($A=,$Ca, Sr, and Ba) single crystals

261   0   0.0 ( 0 )
 Added by Christopher Homes
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The detailed optical properties have been determined for the iron-based materials $A$Fe$_2$As$_2$, where $A=,$Ca, Sr, and Ba, for light polarized in the iron-arsenic ($a-b$) planes over a wide frequency range, above and below the magnetic and structural transitions at $T_N =$ 172, 195, and 138 K, respectively. The real and imaginary parts of the complex conductivity are fit simultaneously using two Drude terms in combination with a series of oscillators. Above $T_N$, the free-carrier response consists of a weak, narrow Drude term, and a strong, broad Drude term, both of which show only a weak temperature dependence. Below $T_N$ there is a slight decrease of the plasma frequency but a dramatic drop in the scattering rate for the narrow Drude term, and for the broad Drude term there is a significant decrease in the plasma frequency, while the decrease in the scattering rate, albeit significant, is not as severe. The small values observed for the scattering rates for the narrow Drude term for $Tll{T_N}$ may be related to the Dirac cone-like dispersion of the electronic bands. Below $T_N$ new features emerge in the optical conductivity that are associated with the reconstruction Fermi surface and the gapping of bands at $Delta_1 simeq$ 45 $-$ 80 meV, and $Delta_2 simeq$ 110 $-$ 210 meV. The reduction in the spectral weight associated with the free carriers is captured by the gap structure, specifically, the spectral weight from the narrow Drude term appears to be transferred into the low-energy gap feature, while the missing weight from the broad term shifts to the high-energy gap.



rate research

Read More

90 - R. Yang , J. W. Huang , N. Zaki 2019
We report the temperature-dependent optical conductivity and ARPES studies of the iron-based superconductor (SC) Sr$_{0.67}$Na$_{0.33}$Fe$_2$As$_2$ in the high-temperature tetragonal paramagnetic phase; below the structural and magnetic transitions at $T_{rm N}simeq$125 K in the orthorhombic spin-density-wave (SDW)-like phase, and $T_rsimeq$42 K in the reentrant tetragonal double-Q magnetic phase where both charge and SDW order exist; and below the SC transition at $T_csimeq$10 K. The free-carrier component in the optical conductivity is described by two Drude contributions; one strong and broad, the other weak and narrow. The broad Drude component decreases dramatically below $T_{rm N}$ and $T_r$, with much of its strength being transferred to a bound excitation in the mid-infrared, while the narrow Drude component shows no anomalies at either of the transitions, actually increasing in strength at low temperature while narrowing dramatically. The behavior of an infrared-active mode suggests zone-folding below $T_r$. Below $T_c$ the dramatic decrease in the low-frequency optical conductivity signals the formation of a SC energy gap. ARPES reveals hole-like bands at the center of the Brillouin zone (BZ), with both electron- and hole-like bands at the corners. Below $T_{rm N}$, the hole pockets at the center of the BZ decrease in size, consistent with the behavior of the broad Drude component; while below $T_r$ the electron-like bands shift and split, giving rise to a low-energy excitation in the optical conductivity at ~20 meV. The magnetic states, with resulting SDW and charge-SDW order, respectively, lead to a significant reconstruction of the Fermi surface that has profound implications for the transport originating from the electron and hole pockets, but appears to have relatively little impact on the SC in this material.
We present a detailed study of the magnetic and electronic properties of U$_2$Rh$_3$Si$_5$, a material that has been demonstrated to exhibit a first order antiferromagnetic phase transition. From a high magnetic field study, together with extensive experiments in moderate fields, we establish the magnetic phase diagrams for all crystallographic directions. The possibility of an electronic phase in a narrow interval above the Neel temperature as a precursor of a magnetic phase is discussed.
The optical properties of KFe$_2$As$_2$ have been measured for light polarized in the a-b planes over a wide temperature and frequency range. Below $T^astsimeq 155$ K, where this material undergoes an incoherent-coherent crossover, we observe a new coherent response emerging in the optical conductivity. A spectral weight analysis suggests that this new feature arises out of high-energy bound states. Below about $T_{rm FL} simeq 75$ K the scattering rate for this new feature is quadratic in temperature, indicating a Fermi-liquid response. Theory calculations suggest this crossover is dominated by the $d_{xy}$ orbital. Our results advocate for Kondo-type screening as the mechanism for the orbital-selective incoherent-coherent crossover in hole-overdoped KFe$_2$As$_2$.
We report measurements of the Hall coefficient $R_H$ for single crystals of AFe$_2$As$_2$ with $A = Ba, Ca$ or $Sr$ which are the anti-ferromagnetic parent compounds of some high temperature pnictide superconductors. We show that $R_H$ of Sr-122 is consistent with high field quantum oscillation data. Our $R_H(T)$ data can also be used to estimate values of the spin density wave gap, giving $Delta_{SDW}(0) = 710pm 70$ K for Sr-122 and $435pm 20$ K for Ba-122.
86 - W. T. Jin , Y. Xiao , Z. Bukowski 2016
The magnetic ground state of the Eu$^{2+}$ moments in a series of Eu(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ single crystals grown from the Sn flux has been investigated in detail by neutron diffraction measurements. Combined with the results from the macroscopic properties (resistivity, magnetic susceptibility and specific heat) measurements, a phase diagram describing how the Eu magnetic order evolves with Co doping in Eu(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ is established. The ground-state magnetic structure of the Eu$^{2+}$ spins is found to develop from the A-type antiferromagnetic (AFM) order in the parent compound, via the A-type canted AFM structure with some net ferromagnetic (FM) moment component along the crystallographic $mathit{c}$ direction at intermediate Co doping levels, finally to the pure FM order at relatively high Co doping levels. The ordering temperature of Eu declines linearly at first, reaches the minimum value of 16.5(2) K around $mathit{x}$ = 0.100(4), and then reverses upwards with further Co doping. The doping-induced modification of the indirect Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between the Eu$^{2+}$ moments, which is mediated by the conduction $mathit{d}$ electrons on the (Fe,Co)As layers, as well as the change of the strength of the direct interaction between the Eu$^{2+}$ and Fe$^{2+}$ moments, might be responsible for the change of the magnetic ground state and the ordering temperature of the Eu sublattice. In addition, for Eu(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ single crystals with 0.10 $leqslant$ $mathit{x}$ $leqslant$ 0.18, strong ferromagnetism from the Eu sublattice is well developed in the superconducting state, where a spontaneous vortex state is expected to account for the compromise between the two competing phenomena.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا