Do you want to publish a course? Click here

Entropic Lattice Boltzmann Method for Moving and Deforming Geometries in Three Dimensions

170   0   0.0 ( 0 )
 Added by Iliya Karlin
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Entropic lattice Boltzmann methods have been developed to alleviate intrinsic stability issues of lattice Boltzmann models for under-resolved simulations. Its reliability in combination with moving objects was established for various laminar benchmark flows in two dimensions in our previous work Dorschner et al. [11] as well as for three dimensional one-way coupled simulations of engine-type geometries in Dorschner et al. [12] for flat moving walls. The present contribution aims to fully exploit the advantages of entropic lattice Boltzmann models in terms of stability and accuracy and extends the methodology to three-dimensional cases including two-way coupling between fluid and structure, turbulence and deformable meshes. To cover this wide range of applications, the classical benchmark of a sedimenting sphere is chosen first to validate the general two-way coupling algorithm. Increasing the complexity, we subsequently consider the simulation of a plunging SD7003 airfoil at a Reynolds number of Re = 40000 and finally, to access the models performance for deforming meshes, we conduct a two-way coupled simulation of a self-propelled anguilliform swimmer. These simulations confirm the viability of the new fluid-structure interaction lattice Boltzmann algorithm to simulate flows of engineering relevance.



rate research

Read More

In this paper, we develop and characterize the fully dissipative Lattice Boltzmann method for ultra-relativistic fluids in two dimensions using three equilibrium distribution functions: Maxwell-Juttner, Fermi-Dirac and Bose-Einstein. Our results stem from the expansion of these distribution functions up to fifth order in relativistic polynomials. We also obtain new Gaussian quadratures for square lattices that preserve the spatial resolution. Our models are validated with the Riemann problem and the limitations of lower order expansions to calculate higher order moments are shown. The kinematic viscosity and the thermal conductivity are numerically obtained using the Taylor-Green vortex and the Fourier flow respectively and these transport coefficients are compared with the theoretical prediction from Grads theory. In order to compare different expansion orders, we analyze the temperature and heat flux fields on the time evolution of a hot spot.
We propose a novel multi-domain grid refinement technique with extensions to entropic incompressible, thermal and compressible lattice Boltzmann models. Its validity and accuracy are accessed by comparison to available direct numerical simulation and experiment for the simulation of isothermal, thermal and viscous supersonic flow. In particular, we investigate the advantages of grid refinement for the set-ups of turbulent channel flow, flow past a sphere, Rayleigh-Benard convection as well as the supersonic flow around an airfoil. Special attention is payed to analyzing the adaptive features of entropic lattice Boltzmann models for multi-grid simulations.
Most biological fluids are viscoelastic, meaning that they have elastic properties in addition to the dissipative properties found in Newtonian fluids. Computational models can help us understand viscoelastic flow, but are often limited in how they deal with complex flow geometries and suspended particles. Here, we present a lattice Boltzmann solver for Oldroyd-B fluids that can handle arbitrarily-shaped fixed and moving boundary conditions, which makes it ideally suited for the simulation of confined colloidal suspensions. We validate our method using several standard rheological setups, and additionally study a single sedimenting colloid, also finding good agreement with literature. Our approach can readily be extended to constitutive equations other than Oldroyd-B. This flexibility and the handling of complex boundaries holds promise for the study of microswimmers in viscoelastic fluids.
A rigorous free energy model for ternary fluid flows with density ratio up to of order $O(10^3)$ is presented and implemented using the entropic lattice Boltzmann scheme. The model is thermodynamically consistent and allows a broad range of surface tension ratios, covering both partial wetting states where Neumann triangles are formed, and full wetting states where complete encapsulation of one of fluid components is observed. We further demonstrate that we can capture the bouncing, adhesive and insertive regimes for the binary collisions between immiscible droplets suspended in air. Our approach opens up a vast range of multiphase flow applications involving one gas and several liquid components.
Simulating inhomogeneous flows with different characteristic scales in different coordinate directions using the collide-and-stream based lattice Boltzmann methods (LBM) can be accomplished efficiently using rectangular lattice grids. We develop and investigate a new rectangular central moment LBM based on non-orthogonal moment basis (referred to as RC-LBM). The equilibria to which the central moments relax under collision in this approach are obtained from matching with those corresponding to the continuous Maxwell distribution. A Chapman-Enskog analysis is performed to derive the correction terms to the second order moment equilibria involving the grid aspect ratio and velocity gradients that restores the isotropy of the viscous stress tensor and eliminates the non-Galilean invariant cubic velocity terms of the resulting hydrodynamical equations. A special case of this rectangular formulation involving the raw moments (referred to as the RNR-LBM) is also constructed. The resulting schemes represent a considerable simplification, especially for the transformation matrices and isotropy corrections, and improvement over the existing MRT-LB schemes on rectangular lattice grids that use orthogonal moment basis. Numerical validation study of both the RC-LBM and RNR-LBM for a variety of benchmark flow problems are performed that show good accuracy at various grid aspect ratios. The ability of our proposed schemes to simulate flows using relatively lower grid aspect ratios than considered in prior rectangular LB approaches is demonstrated. Furthermore, simulations reveal the superior stability characteristics of the RC-LBM over RNR-LBM in handling shear flows at lower viscosities and/or higher characteristic velocities. In addition, computational advantages of using our rectangular LB formulation in lieu of that based on the square lattice is shown.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا