No Arabic abstract
In this paper, we develop and characterize the fully dissipative Lattice Boltzmann method for ultra-relativistic fluids in two dimensions using three equilibrium distribution functions: Maxwell-Juttner, Fermi-Dirac and Bose-Einstein. Our results stem from the expansion of these distribution functions up to fifth order in relativistic polynomials. We also obtain new Gaussian quadratures for square lattices that preserve the spatial resolution. Our models are validated with the Riemann problem and the limitations of lower order expansions to calculate higher order moments are shown. The kinematic viscosity and the thermal conductivity are numerically obtained using the Taylor-Green vortex and the Fourier flow respectively and these transport coefficients are compared with the theoretical prediction from Grads theory. In order to compare different expansion orders, we analyze the temperature and heat flux fields on the time evolution of a hot spot.
A cascaded lattice Boltzmann (LB) approach based on central moments and multiple relaxation times to simulate thermal convective flows, which are driven by buoyancy forces and/or swirling effects, in the cylindrical coordinate system with axial symmetry is presented. In this regard, the dynamics of the axial and radial momentum components along with the pressure are represented by means of the 2D Navier-Stokes equations with geometric mass and momentum source terms in the pseudo Cartesian form, while the evolutions of the azimuthal momentum and the temperature field are each modeled by an advection-diffusion type equation with appropriate local source terms. Based on these, cascaded LB schemes involving three distribution functions are formulated to solve for the fluid motion in the meridian plane using a D2Q9 lattice, and to solve for the azimuthal momentum and the temperature field each using a D2Q5 lattice. The geometric mass and momentum source terms for the flow fields and the energy source term for the temperature field are included using a new symmetric operator splitting technique, via pre-collision and post-collision source steps around the cascaded collision step for each distribution function. These result in a particularly simple and compact formulation to directly represent the effect of various geometric source terms consistently in terms of changes in the appropriate zeroth and first order moments. Simulations of several complex buoyancy-driven thermal flows and including rotational effects in cylindrical geometries using the new axisymmetric cascaded LB schemes show good agreement with prior benchmark results for the structures of the velocity and thermal fields as well as the heat transfer rates given in terms of the Nusselt numbers.
Operator split forcing schemes exploiting a symmetrization principle, i.e. Strang splitting, for cascaded lattice Boltzmann (LB) methods in two- and three-dimensions for fluid flows with impressed local forces are presented. Analogous scheme for the passive scalar transport represented by a convection-diffusion equation with a source term in a novel cascaded LB formulation is also derived. They are based on symmetric applications of the split solutions of the changes on the scalar field/fluid momentum due to the sources/forces over half time steps before and after the collision step. The latter step is effectively represented in terms of the post-collision change of moments at zeroth and first orders, respectively, to represent the effect of the sources on the scalar transport and forces on the fluid flow. Such symmetrized operator split cascaded LB schemes are consistent with the second-order Strang splitting and naturally avoid any discrete effects due to forces/sources by appropriately projecting their effects for higher order moments. All the force/source implementation steps are performed only in the moment space and they do not require formulations as extra terms and their additional transformations to the velocity space. These result in particularly simpler and efficient schemes to incorporate forces/sources in the cascaded LB methods unlike those considered previously. Numerical study for various benchmark problems in 2D and 3D for fluid flow problems with body forces and scalar transport with sources demonstrate the validity and accuracy, as well as the second-order convergence rate of the symmetrized operator split forcing/source schemes for the cascaded LB methods.
Entropic lattice Boltzmann methods have been developed to alleviate intrinsic stability issues of lattice Boltzmann models for under-resolved simulations. Its reliability in combination with moving objects was established for various laminar benchmark flows in two dimensions in our previous work Dorschner et al. [11] as well as for three dimensional one-way coupled simulations of engine-type geometries in Dorschner et al. [12] for flat moving walls. The present contribution aims to fully exploit the advantages of entropic lattice Boltzmann models in terms of stability and accuracy and extends the methodology to three-dimensional cases including two-way coupling between fluid and structure, turbulence and deformable meshes. To cover this wide range of applications, the classical benchmark of a sedimenting sphere is chosen first to validate the general two-way coupling algorithm. Increasing the complexity, we subsequently consider the simulation of a plunging SD7003 airfoil at a Reynolds number of Re = 40000 and finally, to access the models performance for deforming meshes, we conduct a two-way coupled simulation of a self-propelled anguilliform swimmer. These simulations confirm the viability of the new fluid-structure interaction lattice Boltzmann algorithm to simulate flows of engineering relevance.
A new lattice Boltzmann model for reactive ideal gas mixtures is presented. The model is an extension to reactive flows of the recently proposed multi-component lattice Boltzmann model for compressible ideal gas mixtures with Stefan-Maxwell diffusion for species interaction. First, the kinetic model for the Stefan--Maxwell diffusion is enhanced to accommodate a source term accounting the change of the mixture composition due to chemical reaction. Second, by including the heat of formation in the energy equation, the thermodynamic consistency of the underlying compressible lattice Boltzmann model for momentum and energy allows a realization of the energy and temperature change due to chemical reactions. This obviates the need for ad-hoc modelling with source terms for temperature or heat. Both parts remain consistently coupled through mixture composition, momentum, pressure, energy and enthalpy. The proposed model uses the standard three-dimensional lattices and is validated with a set of benchmarks including laminar burning speed in the hydrogen-air mixture and circular expanding premixed flame.
A new lattice Boltzmann model (LBM) for chemically reactive mixtures is presented. The approach capitalizes on the recently introduced thermodynamically consistent LBM for multicomponent mixtures of ideal gases. Similar to the non-reactive case, the present LBM features Stefan--Maxwell diffusion of chemical species and a fully on-lattice mean-field realization of the momentum and energy of the flow. Besides introducing the reaction mechanism into the kinetic equations for the species, the proposed LBM also features a new realization of the compressible flow by using a concept of extended equilibrium on a standard lattice in three dimensions. The full thermodynamic consistency of the original non-reactive multicomponent LBM enables to extend the temperature dynamics to the reactive mixtures by merely including the enthalpy of formation in addition to the previously considered sensible energy. Furthermore, we describe in detail the boundary conditions to be used for reactive flows of practical interest. The model is validated against a direct numerical simulation of various burning regimes of a hydrogen/air mixture in a microchannel, in two and three dimensions. Excellent comparison in these demanding benchmarks indicates that the proposed LBM can be a valuable and universal model for complex reactive flows.