Do you want to publish a course? Click here

An extensible lattice Boltzmann method for viscoelastic flows: complex and moving boundaries in Oldroyd-B fluids

108   0   0.0 ( 0 )
 Added by Michael Kuron
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Most biological fluids are viscoelastic, meaning that they have elastic properties in addition to the dissipative properties found in Newtonian fluids. Computational models can help us understand viscoelastic flow, but are often limited in how they deal with complex flow geometries and suspended particles. Here, we present a lattice Boltzmann solver for Oldroyd-B fluids that can handle arbitrarily-shaped fixed and moving boundary conditions, which makes it ideally suited for the simulation of confined colloidal suspensions. We validate our method using several standard rheological setups, and additionally study a single sedimenting colloid, also finding good agreement with literature. Our approach can readily be extended to constitutive equations other than Oldroyd-B. This flexibility and the handling of complex boundaries holds promise for the study of microswimmers in viscoelastic fluids.



rate research

Read More

A hybrid computational method coupling the lattice-Boltzmann (LB) method and a Langevin-dynamics (LD) method is developed to simulate nanoscale particle and polymer (NPP) suspensions in the presence of both thermal fluctuation and long-range many-body hydrodynamic interactions (HI). Brownian motion of the NPP is explicitly captured by a stochastic forcing term in the LD method. The LD method is two-way coupled to the non-fluctuating LB fluid through a discrete LB forcing source distribution to capture the long-range HI. To ensure intrinsically linear scalability with respect to the number of particles, an Eulerian-host algorithm for short-distance particle neighbor search and interaction is developed and embedded to LB-LD framework. The validity and accuracy of the LB-LD approach are demonstrated through several sample problems. The simulation results show good agreements with theory and experiment. The LB-LD approach can be favorably incorporated into complex multiscale computational frameworks for efficiently simulating multiscale, multicomponent particulate suspension systems such as complex blood suspensions.
Recently, detailed experiments on visco-elastic channel flow have provided convincing evidence for a nonlinear instability scenario which we had argued for based on calculations for visco-elastic Couette flow. Motivated by these experiments we extend the previous calculations to the case of visco-elastic Poiseuille flow, using the Oldroyd-B constitutive model. Our results confirm that the subcritical instability scenario is similar for both types of flow, and that the nonlinear transition occurs for Weissenberg numbers somewhat larger than one. We provide detailed results for the convergence of our expansion and for the spatial structure of the mode that drives the instability. This also gives insight into possible similarities with the mechanism of the transition to turbulence in Newtonian pipe flow.
The effects of mid-range repulsion in Lattice Boltzmann models on the coalescence/breakup behaviour of single-component, non-ideal fluids are investigated. It is found that mid-range repulsive interactions allow the formation of spray-like, multi-droplet configurations, with droplet size directly related to the strength of the repulsive interaction. The simulations show that just a tiny ten-percent of mid-range repulsive pseudo-energy can boost the surface/volume ratio of the phase- separated fluid by nearly two orders of magnitude. Drawing upon a formal analogy with magnetic Ising systems, a pseudo-potential energy is defined, which is found to behave like a quasi-conserved quantity for most of the time-evolution. This offers a useful quantitative indicator of the stability of the various configurations, thus helping the task of their interpretation and classification. The present approach appears to be a promising tool for the computational modelling of complex flow phenomena, such as atomization, spray formation and micro-emulsions, break-up phenomena and possibly glassy-like systems as well.
Entropic lattice Boltzmann methods have been developed to alleviate intrinsic stability issues of lattice Boltzmann models for under-resolved simulations. Its reliability in combination with moving objects was established for various laminar benchmark flows in two dimensions in our previous work Dorschner et al. [11] as well as for three dimensional one-way coupled simulations of engine-type geometries in Dorschner et al. [12] for flat moving walls. The present contribution aims to fully exploit the advantages of entropic lattice Boltzmann models in terms of stability and accuracy and extends the methodology to three-dimensional cases including two-way coupling between fluid and structure, turbulence and deformable meshes. To cover this wide range of applications, the classical benchmark of a sedimenting sphere is chosen first to validate the general two-way coupling algorithm. Increasing the complexity, we subsequently consider the simulation of a plunging SD7003 airfoil at a Reynolds number of Re = 40000 and finally, to access the models performance for deforming meshes, we conduct a two-way coupled simulation of a self-propelled anguilliform swimmer. These simulations confirm the viability of the new fluid-structure interaction lattice Boltzmann algorithm to simulate flows of engineering relevance.
The effects of elasticity on the break-up of liquid threads in microfluidic cross-junctions is investigated using numerical simulations based on the lattice Boltzmann models (LBM). Working at small Capillary numbers, we investigate the effects of non-Newtonian phases in the transition from droplet formation at the cross-junction (DCJ) and droplet formation downstream of the cross-junction (DC) (Liu & Zhang, ${it Phys. Fluids.}$ ${bf 23}$, 082101 (2011)). Viscoelasticity is found to influence the break-up point of the threads, which moves closer to the cross-junction and stabilizes. This is attributed to an increase of the polymer feedback stress forming in the corner flows, where the side channels of the device meet the main channel.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا