No Arabic abstract
We discuss how x-ray Compton scattering spectra can be used for investigating the evolution of electronic states in cathode materials of Li batteries under the lithiation/delithiation process. In particular, our analysis of the Compton spectra taken from polycrystalline LixCoO2 samples shows that the spectra are dominated by the contribution of the O-2p redox orbital. We identify a distinct signature of d-orbital delocalization, which is tied directly to the conductivity of the material, providing a descriptor based on Compton spectra for monitoring the lithiation range with improved conductivity and kinetics for electrochemical operation. Our study demonstrates that Compton scattering spectroscopy can provide a window for probing complex electronic mechanisms underlying the charging and discharging processes in Li-battery materials.
Non-destructive determination of lithium distribution in a working battery is key for addressing both efficiency and safety issues. Although various techniques have been developed to map the lithium distribution in electrodes, these methods are mostly applicable to test cells. Here we propose the use of high-energy x-ray Compton scattering spectroscopy to measure the local lithium concentration in closed electrochemical cells. A combination of experimental measurements and parallel first-principles computations is used to show that the shape parameter S of the Compton profile is linearly proportional to lithium concentration and thus provides a viable descriptor for this important quantity. The merits and applicability of our method are demonstrated with illustrative examples of LixMn2O4 cathodes and a working commercial lithium coin battery CR2032.
We present an incisive spectroscopic technique for directly probing redox orbitals based on bulk electron momentum density measurements via high-resolution x-ray Compton scattering. Application of our method to spinel LixMn2O4, a lithium ion battery cathode material, is discussed. The orbital involved in the lithium insertion and extraction process is shown to mainly be the oxygen 2p orbital. Moreover, the manganese 3d states are shown to experience spatial delocalization involving 0.16 electrons per Mn site during the battery operation. Our analysis provides a clear understanding of the fundamental redox process involved in the working of a lithium ion battery.
Compton scattering is one of the promising probe to quantitate of the Li under in-operando condition, since high-energy X-rays which have high penetration power into the materials are used as incident beam and Compton scattered energy spectrum have specific line-shape by the elements. We develop in-operando quantitation method of Li composition in the electrodes by using line-shape (Sparameter) analysis of Compton scattered energy spectrum. In this study, we apply S-parameter analysis to commercial coin cell Li-ion rechargeable battery and obtain the variation of S-parameters during charge/discharge cycle at positive and negative electrodes. By using calibration curves for Li composition in the electrodes, we determine the change of Li composition of positive and negative electrodes through S-parameters, simultaneously.
Solid-state batteries (SSBs) can offer a paradigm shift in battery safety and energy density. Yet, the promise hinges on the ability to integrate high-performance electrodes with state-of-the-art solid electrolytes. For example, lithium (Li) metal, the most energy-dense anode candidate, suffers from severe interfacial chemomechanical issues that lead to cell failure. Li alloys of In/Sn are attractive alternatives, but their exploration has mostly been limited to the low capacity(low Li content)and In rich Li$_x$In (x$leq$0.5). Here, the fundamental electro-chemo-mechanical behavior of Li-In and Li-Sn alloys of varied Li stoichiometries is unravelled in sulfide electrolyte based SSBs. The intermetallic electrodes developed through a controlled synthesis and fabrication technique display impressive (electro)chemical stability with Li$_6$PS$_5$Cl as the solid electrolyte and maintain nearly perfect interfacial contact during the electrochemical Li insertion/deinsertion under an optimal stack pressure. Their intriguing variation in the Li migration barrier with composition and its influence on the observed Li cycling overpotential is revealed through combined computational and electrochemical studies. Stable interfacial chemomechanics of the alloys allow long-term dendrite free Li cycling (>1000 h) at relatively high current densities (1 mA cm$^{-2}$) and capacities (1 mAh cm$^{-2}$), as demonstrated for Li$_{13}$In$_3$ and Li$_{17}$Sn$_4$, which are more desirable from a capacity and cost consideration compared to the low Li content analogues. The presented understanding can guide the development of high-capacity Li-In/Sn alloy anodes for SSBs.
The diversified essential properties of the stage-n graphite alkali-intercalation compounds are thoroughly explored by the first-principles calculations. According to their main features, the lithium and non-lithium materials might be quite different from each other in stacking configurations, the intercalated alkali-atom concentrations, the free conduction electron densities, and the atom-dominated & (carbon, alkali)-co-dominated energy bands. The close relations between the alkali-doped metallic behaviors and the geometric symmetries will be clarified through the interlayer atomic interactions, in which the significant alkali-carbon chemical bondings are fully examined from the atom- and orbital-decomposed van Hove singularities. The blue shift of the Fermi level, the n-type doping, is clearly identified from the low-energy features of the density of states. This study is able to provide the partial information about anode of Li+-based battery. There are certain important differences between AC$_6$/AC$_8$ and Li$_8$Si$_4$O$_{12}$.