Non-destructive determination of lithium distribution in a working battery is key for addressing both efficiency and safety issues. Although various techniques have been developed to map the lithium distribution in electrodes, these methods are mostly applicable to test cells. Here we propose the use of high-energy x-ray Compton scattering spectroscopy to measure the local lithium concentration in closed electrochemical cells. A combination of experimental measurements and parallel first-principles computations is used to show that the shape parameter S of the Compton profile is linearly proportional to lithium concentration and thus provides a viable descriptor for this important quantity. The merits and applicability of our method are demonstrated with illustrative examples of LixMn2O4 cathodes and a working commercial lithium coin battery CR2032.
In view of the long-standing controversy over the reversibility of transition metals in Sn-based alloys as anode for Li-ion batteries, an in situ real-time magnetic monitoring method was used to investigate the evolution of Sn-Co intermetallic during the electrochemical cycling. Sn-Co alloy film anodes with different compositions were prepared via magnetron sputtering without using binders and conductive additives. The magnetic responses showed that the Co particles liberated by Li insertion recombine fully with Sn during the delithiation to reform Sn-Co intermetallic into stannum richer phases Sn7Co3. However, as the Co content increases, it can only recombine partially with Sn into cobalt richer phases Sn3Co7. The unconverted Co particles may form a dense barrier layer and prevent the full reaction of Li with all the Sn in the anode, leading to lower capacities. These critical results shed light on understanding the reaction mechanism of transition metals, and provide valuable insights toward the design of high-performance Sn alloy based anodes.
We discuss how x-ray Compton scattering spectra can be used for investigating the evolution of electronic states in cathode materials of Li batteries under the lithiation/delithiation process. In particular, our analysis of the Compton spectra taken from polycrystalline LixCoO2 samples shows that the spectra are dominated by the contribution of the O-2p redox orbital. We identify a distinct signature of d-orbital delocalization, which is tied directly to the conductivity of the material, providing a descriptor based on Compton spectra for monitoring the lithiation range with improved conductivity and kinetics for electrochemical operation. Our study demonstrates that Compton scattering spectroscopy can provide a window for probing complex electronic mechanisms underlying the charging and discharging processes in Li-battery materials.
Compton scattering is one of the promising probe to quantitate of the Li under in-operando condition, since high-energy X-rays which have high penetration power into the materials are used as incident beam and Compton scattered energy spectrum have specific line-shape by the elements. We develop in-operando quantitation method of Li composition in the electrodes by using line-shape (Sparameter) analysis of Compton scattered energy spectrum. In this study, we apply S-parameter analysis to commercial coin cell Li-ion rechargeable battery and obtain the variation of S-parameters during charge/discharge cycle at positive and negative electrodes. By using calibration curves for Li composition in the electrodes, we determine the change of Li composition of positive and negative electrodes through S-parameters, simultaneously.
The relationship between charge and structure dictates the properties of electrochemical systems. For example, reversible Na-ion intercalation - a low-cost alternative to Li-ion technology - often induces detrimental structural phase transformations coupled with charge compensation reactions. However, little is known about the underpinning charge-structure mechanisms because the reduction-oxidation (redox) reactions within coexisting structural phases have so far eluded direct operando investigation. Here, we distinguish x-ray spectra of individual crystalline phases operando during a redox-induced phase transformation in P2-Na2/3Ni1/3Mn2/3O2 - an archetypal layered oxide for sodium-ion batteries. We measure the resonant elastic scattering on the Bragg reflection corresponding to the P2-phase lattice spacing. These resonant spectra become static midway through the sodium extraction in an operando coin cell, while the overall sodium extraction proceeds as evidenced by the X-ray absorption averaging over all electrochemically active Ni atoms. The stop of redox activity in the P2-structure signifies its inability to host Ni4+ ions. The coincident emergence of the O2- structure reveals the rigid link between the local redox and the long-range order during the phase transformation. The structure-selective x-ray spectroscopy thus opens a powerful avenue for resolving the dynamic chemistry of different structural phases in multi-phase electrochemical systems.
Compton scattering imaging using high-energy synchrotron x-rays allows the visualization of the spatio-temporal lithiation state in lithium-ion batteries probed in-operando. Here, we apply this imaging technique to the commercial 18650-type cylindrical lithium-ion battery. Our analysis of the lineshapes of the Compton scattering spectra taken from different electrode layers reveals the emergence of inhomogeneous lithiation patterns during the charge-discharge cycles. Moreover, these patterns exhibit oscillations in time where the dominant period corresponds to the time scale of the charging curve.