Do you want to publish a course? Click here

Spin resonance in the superconducting state of Li$_{1-x}$Fe$_{x}$ODFe$_{1-y}$Se observed by neutron spectroscopy

91   0   0.0 ( 0 )
 Added by Nathaniel Davies
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have performed inelastic neutron scattering measurements on a powder sample of the superconductor lithium iron selenide hydroxide Li$_{1-x}$Fe$_{x}$ODFe$_{1-y}$Se ($x simeq 0.16, y simeq 0.02$, $T_{rm c} = 41$,K). The spectrum shows an enhanced intensity below $T_{rm c}$ over an energy range $0.64times2Delta < E < 2Delta$, where $Delta$ is the superconducting gap, with maxima at the wave vectors $Q_1 simeq 1.46$,AA$^{-1}$ and $Q_2 simeq 1.97$,AA$^{-1}$. The behavior of this feature is consistent with the spin resonance mode found in other unconventional superconductors, and strongly resembles the spin resonance observed in the spectrum of the molecular-intercalated iron selenide, Li$_{0.6}$(ND$_{2}$)$_{0.2}$(ND$_{3}$)$_{0.8}$Fe$_{2}$Se$_{2}$. The signal can be described with a characteristic two-dimensional wave vector $(pi, 0.67pi)$ in the Brillouin zone of the iron square lattice, consistent with the nesting vector between electron Fermi sheets.



rate research

Read More

The idea of employing non-Abelian statistics for error-free quantum computing ignited interest in recent reports of topological surface superconductivity and Majorana zero modes (MZMs) in FeTe$_{0.55}$Se$_{0.45}$. An associated puzzle is that the topological features and superconducting properties are not observed uniformly across the sample surface. Understanding and practical control of these electronic inhomogeneities present a prominent challenge for potential applications. Here, we combine neutron scattering, scanning angle-resolved photoemission spectroscopy (ARPES), and microprobe composition and resistivity measurements to characterize the electronic state of Fe$_{1+y}$Te$_{1-x}$Se$_{x}$. We establish a phase diagram in which the superconductivity is observed only at sufficiently low Fe concentration, in association with distinct antiferromagnetic correlations, while the coexisting topological surface state occurs only at sufficiently high Te concentration. We find that FeTe$_{0.55}$Se$_{0.45}$ is located very close to both phase boundaries, which explains the inhomogeneity of superconducting and topological states. Our results demonstrate the compositional control required for use of topological MZMs in practical applications.
The iron chalcogenide Fe$_{1+y}$Te$_{1-x}$Se$_{x}$ on the Te-rich side is known to exhibit the strongest electron correlations among the Fe-based superconductors, and is non-superconducting for $x$ < 0.1. In order to understand the origin of such behaviors, we have performed ARPES studies of Fe$_{1+y}$Te$_{1-x}$Se$_{x}$ ($x$ = 0, 0.1, 0.2, and 0.4). The obtained mass renormalization factors for different energy bands are qualitatively consistent with DFT + DMFT calculations. Our results provide evidence for strong orbital dependence of mass renormalization, and systematic data which help us to resolve inconsistencies with other experimental data. The unusually strong orbital dependence of mass renormalization in Te-rich Fe$_{1+y}$Te$_{1-x}$Se$_{x}$ arises from the dominant contribution to the Fermi surface of the $d_{xy}$ band, which is the most strongly correlated and may contribute to the suppression of superconductivity.
Superconducting [(Li(1-x)Fex)OH](Fe(1-y)Liy)Se (x ~ 0.2, y ~ 0.08) was synthesized by hydrothermal methods and structurally characterized by single crystal X-ray diffraction. The crystal structure contains anti-PbO type (Fe(1-y)Liy)Se layers separated by layers of (Li(1-x)Fex)OH. Electrical resistivity and magnetic susceptibility measurements reveal superconductivity at 43 K. An anomaly in the diamagnetic shielding indicates ferromagnetic ordering near 10 K while superconductivity is retained. The ferromagnetism emerges from the iron atoms in the (Li(1-x)Fex)OH layer. Isothermal magnetization measurements confirm the superposition of ferromagnetic with superconducting hysteresis. The internal ferromagnetic field is larger than the lower, but smaller than the upper critical field of the superconductor, which gives evidence for a spontaneous vortex phase where both orders coexist. 57Fe-Mossbauer spectra, 7Li-NMR spectra, and muSR experiments consistently support this rare situation, especially in a bulk material where magnetism emerges from a 3d-element.
Among the Fe-based superconductors, Fe$_{1+y}$Te$_{1-x}$Se$_{x}$ is unique in that its crystal structure is the simplest and the electron correlation level is the strongest, and thus it is important to investigate the doping($x$)-temperature ($T$) phase diagram of this system. However, inevitably incorporated excess Fe currently prevents the establishment of the true phase diagram. We overcome the aforementioned significant problem via developing a new annealing method termed as Te-annealing wherein single crystals are annealed under Te vapor. Specifically, we conducted various magnetotransport measurements on Te-annealed superconducting Fe$_{1+y}$Te$_{1-x}$Se$_{x}$. We observed that crossover from the incoherent to the coherent electronic state and opening of the pseudogap occurs at high temperatures ($approx$ 150 K for $x$ = 0.2). This is accompanied by a more substantial pseudogap and the emergence of a phase with a multi-band nature at lower temperatures (below $approx$ 50 K for $x$ = 0.2) before superconductivity sets in. Based on the results, the third type electronic phase diagram in Fe-based high-$T_c$ superconductors is revealed.
Neutron scattering has played a significant role in characterizing magnetic and structural correlations in Fe$_{1+y}$Te$_{1-x}$Se$_x$ and their connections with superconductivity. Here we review several key aspects of the physics of iron chalcogenide superconductors where neutron studies played a key role. These topics include the phase diagram of Fe$_{1+y}$Te$_{1-x}$Se$_{x}$, where the doping-dependence of structural transitions can be understood from a mapping to the anisotropic random field Ising model. We then discuss orbital-selective Mott physics in the Fe chalcogenide series, where temperature-dependent magnetism in the parent material provided one of the earliest cases for orbital-selective correlation effects in a Hunds metal. Finally, we elaborate on the character of local magnetic correlations revealed by neutron scattering, its dependence on temperature and composition, and the connections to nematicity and superconductivity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا