No Arabic abstract
Among the Fe-based superconductors, Fe$_{1+y}$Te$_{1-x}$Se$_{x}$ is unique in that its crystal structure is the simplest and the electron correlation level is the strongest, and thus it is important to investigate the doping($x$)-temperature ($T$) phase diagram of this system. However, inevitably incorporated excess Fe currently prevents the establishment of the true phase diagram. We overcome the aforementioned significant problem via developing a new annealing method termed as Te-annealing wherein single crystals are annealed under Te vapor. Specifically, we conducted various magnetotransport measurements on Te-annealed superconducting Fe$_{1+y}$Te$_{1-x}$Se$_{x}$. We observed that crossover from the incoherent to the coherent electronic state and opening of the pseudogap occurs at high temperatures ($approx$ 150 K for $x$ = 0.2). This is accompanied by a more substantial pseudogap and the emergence of a phase with a multi-band nature at lower temperatures (below $approx$ 50 K for $x$ = 0.2) before superconductivity sets in. Based on the results, the third type electronic phase diagram in Fe-based high-$T_c$ superconductors is revealed.
Superconductivity (SC) with the suppression of long-range antiferromagnetic (AFM) order is observed in the parent compounds of both iron-based and cuprate superconductors. The AFM wave vectors are bicollinear ($pi$, 0) in the parent compound FeTe different from the collinear AFM order ($pi$, $pi$) in most iron pnictides. Study of the phase diagram of Fe$_{1+y}$Te$_{1-x}$Se$_x$ is the most direct way to investigate the competition between bicollinear AFM and SC. However, presence of interstitial Fe affects both magnetism and SC of Fe$_{1+y}$Te$_{1-x}$Se$_x$, which hinders the establishment of the real phase diagram. Here, we report the comparison of doping-temperature ($x$-$T$) phase diagrams for Fe$_{1+y}$Te$_{1-x}$Se$_x$ (0 $leq$ $x$ $leq$ 0.43) single crystals before and after removing interstitial Fe. Without interstitial Fe, the AFM state survives only for $x$ $<$ 0.05, and bulk SC emerges from $x$ = 0.05, and does not coexist with the AFM state. The previously reported spin glass state, and the coexistence of AFM and SC may be originated from the effect of the interstitial Fe. The phase diagram of Fe$_{1+y}$Te$_{1-x}$Se$_x$ is found to be similar to the case of the 1111 system such as LaFeAsO$_{1-x}$F$_x$, and is different from that of the 122 system.
We compare the superconducting phase-diagram under high magnetic fields (up to $H = 45$ T) of Fe$_{1+y}$Se$_{0.4}$Te$_{0.6}$ single crystals originally grown by the Bridgman-Stockbarger (BRST) technique, which were annealed to display narrow superconducting transitions and the optimal transition temperature $T_c gtrsim 14$ K, with the diagram for samples of similar stoichiometry grown by the traveling-solvent floating-zone technique as well as with the phase-diagram reported for crystals grown by a self-flux method. We find that the so-annealed samples tend to display higher ratios $H_{c2}/T_c$, particularly for fields applied along the inter-planar direction, where the upper critical field $H_{c2}(T)$ exhibits a pronounced downward curvature followed by saturation at lower temperatures $T$. This last observation is consistent with previous studies indicating that this system is Pauli limited. An analysis of our $H_{c2}(T)$ data using a multiband theory suggests the emergence of the Farrel-Fulde-Larkin-Ovchnikov state at low temperatures. A detailed structural x-ray analysis, reveals no impurity phases but an appreciable degree of mosaicity in as-grown BRST single-crystals which remains unaffected by the annealing process. Energy-dispersive x-ray analysis showed that the annealed samples have a more homogeneous stoichiometric distribution of both Fe and Se with virtually the same content of interstitial Fe as the non-annealed ones. Thus, we conclude that stoichiometric disorder, in contrast to structural disorder, is detrimental to the superconducting phase diagram of this series under high magnetic fields. Finally, a scaling analysis of the fluctuation conductivity in the superconducting critical regime, suggests that the superconducting fluctuations have a two-dimensional character in this system.
The iron chalcogenide Fe$_{1+y}$Te$_{1-x}$Se$_{x}$ on the Te-rich side is known to exhibit the strongest electron correlations among the Fe-based superconductors, and is non-superconducting for $x$ < 0.1. In order to understand the origin of such behaviors, we have performed ARPES studies of Fe$_{1+y}$Te$_{1-x}$Se$_{x}$ ($x$ = 0, 0.1, 0.2, and 0.4). The obtained mass renormalization factors for different energy bands are qualitatively consistent with DFT + DMFT calculations. Our results provide evidence for strong orbital dependence of mass renormalization, and systematic data which help us to resolve inconsistencies with other experimental data. The unusually strong orbital dependence of mass renormalization in Te-rich Fe$_{1+y}$Te$_{1-x}$Se$_{x}$ arises from the dominant contribution to the Fermi surface of the $d_{xy}$ band, which is the most strongly correlated and may contribute to the suppression of superconductivity.
Neutron scattering has played a significant role in characterizing magnetic and structural correlations in Fe$_{1+y}$Te$_{1-x}$Se$_x$ and their connections with superconductivity. Here we review several key aspects of the physics of iron chalcogenide superconductors where neutron studies played a key role. These topics include the phase diagram of Fe$_{1+y}$Te$_{1-x}$Se$_{x}$, where the doping-dependence of structural transitions can be understood from a mapping to the anisotropic random field Ising model. We then discuss orbital-selective Mott physics in the Fe chalcogenide series, where temperature-dependent magnetism in the parent material provided one of the earliest cases for orbital-selective correlation effects in a Hunds metal. Finally, we elaborate on the character of local magnetic correlations revealed by neutron scattering, its dependence on temperature and composition, and the connections to nematicity and superconductivity.
The idea of employing non-Abelian statistics for error-free quantum computing ignited interest in recent reports of topological surface superconductivity and Majorana zero modes (MZMs) in FeTe$_{0.55}$Se$_{0.45}$. An associated puzzle is that the topological features and superconducting properties are not observed uniformly across the sample surface. Understanding and practical control of these electronic inhomogeneities present a prominent challenge for potential applications. Here, we combine neutron scattering, scanning angle-resolved photoemission spectroscopy (ARPES), and microprobe composition and resistivity measurements to characterize the electronic state of Fe$_{1+y}$Te$_{1-x}$Se$_{x}$. We establish a phase diagram in which the superconductivity is observed only at sufficiently low Fe concentration, in association with distinct antiferromagnetic correlations, while the coexisting topological surface state occurs only at sufficiently high Te concentration. We find that FeTe$_{0.55}$Se$_{0.45}$ is located very close to both phase boundaries, which explains the inhomogeneity of superconducting and topological states. Our results demonstrate the compositional control required for use of topological MZMs in practical applications.