Do you want to publish a course? Click here

Magnetic, superconducting, and topological surface states on Fe$_{1+y}$Te$_{1-x}$Se$_{x}$

147   0   0.0 ( 0 )
 Added by Igor Zaliznyak
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The idea of employing non-Abelian statistics for error-free quantum computing ignited interest in recent reports of topological surface superconductivity and Majorana zero modes (MZMs) in FeTe$_{0.55}$Se$_{0.45}$. An associated puzzle is that the topological features and superconducting properties are not observed uniformly across the sample surface. Understanding and practical control of these electronic inhomogeneities present a prominent challenge for potential applications. Here, we combine neutron scattering, scanning angle-resolved photoemission spectroscopy (ARPES), and microprobe composition and resistivity measurements to characterize the electronic state of Fe$_{1+y}$Te$_{1-x}$Se$_{x}$. We establish a phase diagram in which the superconductivity is observed only at sufficiently low Fe concentration, in association with distinct antiferromagnetic correlations, while the coexisting topological surface state occurs only at sufficiently high Te concentration. We find that FeTe$_{0.55}$Se$_{0.45}$ is located very close to both phase boundaries, which explains the inhomogeneity of superconducting and topological states. Our results demonstrate the compositional control required for use of topological MZMs in practical applications.



rate research

Read More

Single crystals of Fe(1+x)Te(1-y)Se(y) have been grown with a controlled Fe excess and Se doping, and the crystal structure has been refined for various compositions. The systematic investigation of magnetic and superconducting properties as a function of the structural parameters shows how the material can be driven into various ground states, depending on doping and the structural modifications. Our results prove that the occupation of the additional Fe site, Fe2, enhances the spin localization. By reducing the excess Fe, the antiferromagnetic ordering is weakened, and the superconducting ground state is favored. We have found that both Fe excess and Se doping in synergy determine the properties of the material and an improved 3-dimensional phase diagram is proposed.
The iron chalcogenide Fe$_{1+y}$Te$_{1-x}$Se$_{x}$ on the Te-rich side is known to exhibit the strongest electron correlations among the Fe-based superconductors, and is non-superconducting for $x$ < 0.1. In order to understand the origin of such behaviors, we have performed ARPES studies of Fe$_{1+y}$Te$_{1-x}$Se$_{x}$ ($x$ = 0, 0.1, 0.2, and 0.4). The obtained mass renormalization factors for different energy bands are qualitatively consistent with DFT + DMFT calculations. Our results provide evidence for strong orbital dependence of mass renormalization, and systematic data which help us to resolve inconsistencies with other experimental data. The unusually strong orbital dependence of mass renormalization in Te-rich Fe$_{1+y}$Te$_{1-x}$Se$_{x}$ arises from the dominant contribution to the Fermi surface of the $d_{xy}$ band, which is the most strongly correlated and may contribute to the suppression of superconductivity.
159 - T. Gebre , G. Li , J. B. Whalen 2011
We compare the superconducting phase-diagram under high magnetic fields (up to $H = 45$ T) of Fe$_{1+y}$Se$_{0.4}$Te$_{0.6}$ single crystals originally grown by the Bridgman-Stockbarger (BRST) technique, which were annealed to display narrow superconducting transitions and the optimal transition temperature $T_c gtrsim 14$ K, with the diagram for samples of similar stoichiometry grown by the traveling-solvent floating-zone technique as well as with the phase-diagram reported for crystals grown by a self-flux method. We find that the so-annealed samples tend to display higher ratios $H_{c2}/T_c$, particularly for fields applied along the inter-planar direction, where the upper critical field $H_{c2}(T)$ exhibits a pronounced downward curvature followed by saturation at lower temperatures $T$. This last observation is consistent with previous studies indicating that this system is Pauli limited. An analysis of our $H_{c2}(T)$ data using a multiband theory suggests the emergence of the Farrel-Fulde-Larkin-Ovchnikov state at low temperatures. A detailed structural x-ray analysis, reveals no impurity phases but an appreciable degree of mosaicity in as-grown BRST single-crystals which remains unaffected by the annealing process. Energy-dispersive x-ray analysis showed that the annealed samples have a more homogeneous stoichiometric distribution of both Fe and Se with virtually the same content of interstitial Fe as the non-annealed ones. Thus, we conclude that stoichiometric disorder, in contrast to structural disorder, is detrimental to the superconducting phase diagram of this series under high magnetic fields. Finally, a scaling analysis of the fluctuation conductivity in the superconducting critical regime, suggests that the superconducting fluctuations have a two-dimensional character in this system.
We report the achieving of depairing current limit along $c$-axis in Fe$_{1+y}$Te$_{1-x}$Se$_x$ single crystals. A series of crystals with $T_{rm{c}}$ ranging from 8.6 K to 13.7 K (different amount of excess Fe, $y$) were fabricated into $c$-axis bridges with a square-micrometer cross-section. The critical current density, $J_{rm{c}}$, was directly estimated from the transport current-voltage measurements. The transport $J_{rm{c}}$ reaches a very large value, which is about one order of magnitude larger than the depinning $J_{rm{c}}$, but comparable to the calculated depairing $J_{rm{c}}$ $sim$ 2 $times$ 10$^6$ A/cm$^2$ at 0 K, based on the Ginzburg-Landau (GL) theory. The temperature dependence of the depairing $J_{rm{c}}$ follows the GL-theory ($propto$ (1-$T/T_{rm{c}}$)$^{3/2}$) down to $sim$ 0.83 $T_{rm{c}}$, then increases with a reduced slope at low temperatures, which can be qualitatively described by the Kupriyanov-Lukichev theory. Our study provides a new route to understand the behavior of depairing $J_{rm{c}}$ in iron-based superconductors in a wide temperature range.
Neutron scattering has played a significant role in characterizing magnetic and structural correlations in Fe$_{1+y}$Te$_{1-x}$Se$_x$ and their connections with superconductivity. Here we review several key aspects of the physics of iron chalcogenide superconductors where neutron studies played a key role. These topics include the phase diagram of Fe$_{1+y}$Te$_{1-x}$Se$_{x}$, where the doping-dependence of structural transitions can be understood from a mapping to the anisotropic random field Ising model. We then discuss orbital-selective Mott physics in the Fe chalcogenide series, where temperature-dependent magnetism in the parent material provided one of the earliest cases for orbital-selective correlation effects in a Hunds metal. Finally, we elaborate on the character of local magnetic correlations revealed by neutron scattering, its dependence on temperature and composition, and the connections to nematicity and superconductivity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا