No Arabic abstract
Probes for the small-x parton densities and predicted effects of gluon saturation are discussed. At very low x and intermediate Q, only results on hadronic observables at the LHC are available, which do not provide unambiguous information. It is shown that the measurement of direct photons at forward rapidity at the LHC is particularly promising to provide a unique signal. We further discuss the possibilities to perform such measurements with a detector upgrade in the ALICE experiment and present the R&D activities ongoing.
The low-x gluon density in the proton and, in particular, in nuclei is only very poorly constrained, while a better understanding of the low-x structure is crucial for measurements at the LHC and also for the planning of experiments at future hadron colliders. In addition, deviations from linear QCD evolution are expected to appear at low x, potentially leading to gluon saturation and a universal state of hadronic matter, the color-glass condensate. However, these effects have not been unambiguously proven to date. Fortunately, data from the LHC can be used directly to provide better constraints of the parton distribution functions (PDFs). In this context, a Forward Calorimeter (FoCal) is proposed as an addition to the ALICE experiment, to be installed in the Long Shutdown 3. The main goal of the FoCal proposal is to measure forward direct photons in pp and p-Pb collisions to obtain experimental constraints on proton and nuclear PDFs in a new region of low x. Based on the current knowledge from DIS experiments and first results from LHC, we will discuss the physics case for this proposed detector. While open charm measurements do provide important constraints, a photon measurement would provide additional unique information. The direct photon measurement requires a new electromagnetic calorimeter with extremely high granularity. The corresponding innovative design principle of a high-resolution Si-W sandwich calorimeter is discussed.
One of the key results of the LHC Run 1 was the observation of an enhanced production of strange particles in high multiplicity pp and p--Pb collisions at $sqrt{s_mathrm{NN}}$ = 7 and 5.02 TeV, respectively. The strangeness enhancement is investigated by measuring the evolution with multiplicity of single-strange and multi-strange baryon production relative to non-strange particles. A smooth increase of strange particle yields relative to the non-strange ones with event multiplicity has been observed in such systems. We report the latest results on multiplicity dependence of strange and multi-strange hadron production in pp collisions at $sqrt{s} = $ 13 TeV with ALICE. We also presented recent measurements of mesonic and baryonic resonances in small collision systems like pp and p--Pb at $sqrt{s_mathrm{NN}}$ = 13 and 8.16 TeV, respectively. The system size dependent studies in pp and p-Pb collisions have been used to investigate how the hadronic scattering processes affect measured resonance yields and to better understand the interplay between canonical suppression and strangeness enhancement. The measurement of the $phi(1020)$ meson as a function of multiplicity provides crucial constraints in this context.
The ALICE experiment at the Large Hadron Collider (LHC) at CERN consists of a central barrel, a muon spectrometer and additional detectors for trigger and event classification purposes. The low transverse momentum threshold of the central barrel gives ALICE a unique opportunity to study the low mass sector of central exclusive production at the LHC.
The differential cross section for the production of direct photons in p+p collisions at sqrt(s)=200 GeV at midrapidity was measured in the PHENIX detector at the Relativistic Heavy Ion Collider. Inclusive-direct photons were measured in the transverse-momentum range from 5.5--25 GeV/c, extending the range beyond previous measurements. Event structure was studied with an isolation criterion. Next-to-leading-order perturbative-quantum-chromodynamics calculations give a good description of the spectrum. When the cross section is expressed versus x_T, the PHENIX data are seen to be in agreement with measurements from other experiments at different center-of-mass energies.
Recent results for high multiplicity pp and p-Pb collisions have revealed that they exhibit heavy-ion-like behaviors. To understand the origin(s) of these unexpected phenomena, event shape observables such as transverse spherocity ($S_{rm 0}^{p_{rm T} = 1}$) and the relative transverse activity classifier ($R_{rm{T}}$) can be exploited as a powerful tools to disentangle soft (non-perturbative) and hard (perturbative) particle production. Here, the production of light-flavor hadrons is shown for various $S_{rm 0}^{p_{rm T} = 1}$ classes in pp collisions at $sqrt{s}$ = 13 $textrm{TeV}$ measured with the ALICE detector at the LHC are presented. The evolution of average transverse momentum ($langle p_{rm T}rangle$) with charged-particle multiplicity, and identified particle ratios as a function of $p_{rm T}$ for different $S_{rm 0}^{p_{rm T} = 1}$ are also presented. In addition, the system size dependence of charged-particle production in pp, p-Pb, and Pb-Pb collisions at $sqrt{s_{rm NN}}$ = 5.02 TeV is presented. The evolution of $langle p_{rm T}rangle$ in different topological regions as a function of $R_{rm{T}}$ are presented. Finally, using the same approach, we present a search for jet quenching behavior in small collision systems.