Do you want to publish a course? Click here

Direct-Photon Production in p+p Collisions at sqrt(s)=200 GeV at Midrapidity

186   0   0.0 ( 0 )
 Added by Brant M. Johnson
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

The differential cross section for the production of direct photons in p+p collisions at sqrt(s)=200 GeV at midrapidity was measured in the PHENIX detector at the Relativistic Heavy Ion Collider. Inclusive-direct photons were measured in the transverse-momentum range from 5.5--25 GeV/c, extending the range beyond previous measurements. Event structure was studied with an isolation criterion. Next-to-leading-order perturbative-quantum-chromodynamics calculations give a good description of the spectrum. When the cross section is expressed versus x_T, the PHENIX data are seen to be in agreement with measurements from other experiments at different center-of-mass energies.



rate research

Read More

We report on charmonium measurements [J/psi(1S), psi(2S), and chi_c(1P)] in p+p collisions at sqrt(s)=200 GeV. We find that the fraction of J/psi coming from the feed-down decay of psi and chi_c in the midrapidity region ($|eta|<0.35$) is 9.6+/-2.4% and 32+/-9%, respectively. We also report new, higher statistics p_T and rapidity dependencies of the J/psi yield via dielectron decay in the same midrapidity range and at forward rapidity (1.2<|eta|<2.4) via dimuon decay. These results are compared with measurements from other experiments and discussed in the context of current charmonium production models.
The PHENIX experiment at the Relativistic Heavy Ion Collider has measured low mass vector meson, $omega$, $rho$, and $phi$, production through the dimuon decay channel at forward rapidity ($1.2<|y|<2.2$) in $p$$+$$p$ collisions at $sqrt{s}=200$ GeV. The differential cross sections for these mesons are measured as a function of both $p_T$ and rapidity. We also report the integrated differential cross sections over $1<p_T<7$ GeV/$c$ and $1.2<|y|<2.2$: $dsigma/dy(omega+rhorightarrowmumu) = 80 pm 6 mbox{(stat)} pm 12 mbox{(syst)}$ nb and $dsigma/dy(phirightarrowmumu) = 27 pm 3 mbox{(stat)} pm 4 mbox{(syst)}$ nb. These results are compared with midrapidity measurements and calculations.
Studying spin-momentum correlations in hadronic collisions offers a glimpse into a three-dimensional picture of proton structure. The transverse single-spin asymmetry for midrapidity isolated direct photons in $p^uparrow+p$ collisions at $sqrt{s}=200$ GeV is measured with the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). Because direct photons in particular are produced from the hard scattering and do not interact via the strong force, this measurement is a clean probe of initial-state spin-momentum correlations inside the proton and is in particular sensitive to gluon interference effects within the proton. This is the first time direct photons have been used as a probe of spin-momentum correlations at RHIC. The uncertainties on the results are a fifty-fold improvement with respect to those of the one prior measurement for the same observable, from the Fermilab E704 experiment. These results constrain gluon spin-momentum correlations in transversely polarized protons.
PHENIX measurements are presented for the cross section and double-helicity asymmetry ($A_{LL}$) in inclusive $pi^0$ production at midrapidity from $p$$+$$p$ collisions at $sqrt{s}=510$~GeV from data taken in 2012 and 2013 at the Relativistic Heavy Ion Collider. The next-to-leading-order perturbative-quantum-chromodynamics theory calculation is in excellent agreement with the presented cross section results. The calculation utilized parton-to-pion fragmentation functions from the recent DSS14 global analysis, which prefer a smaller gluon-to-pion fragmentation function. The $pi^{0}A_{LL}$ results follow an increasingly positive asymmetry trend with $p_T$ and $sqrt{s}$ with respect to the predictions and are in excellent agreement with the latest global analysis results. This analysis incorporated earlier results on $pi^0$ and jet $A_{LL}$, and suggested a positive contribution of gluon polarization to the spin of the proton $Delta G$ for the gluon momentum fraction range $x>0.05$. The data presented here extend to a currently unexplored region, down to $xsim0.01$, and thus provide additional constraints on the value of $Delta G$. The results confirm the evidence for nonzero $Delta G$ using a different production channel in a complementary kinematic region.
117 - C. Aidala , Y. Akiba , M. Alfred 2018
Dihadron and isolated direct photon-hadron angular correlations are measured in $p$$+$$p$ collisions at $sqrt{s}=200$ GeV. The correlations are sensitive to nonperturbative initial-state and final-state transverse momentum $k_T$ and $j_T$ in the azimuthal nearly back-to-back region $Deltaphisimpi$. In this region, transverse-momentum-dependent evolution can be studied when several different hard scales are measured. To have sensitivity to small transverse momentum scales, nonperturbative momentum widths of $p_{rm out}$, the out-of-plane transverse momentum component perpendicular to the trigger particle, are measured. These widths are used to investigate possible effects from transverse-momentum-dependent factorization breaking. When accounting for the longitudinal momentum fraction of the away-side hadron with respect to the near-side trigger particle, the widths are found to increase with the hard scale; this is qualitatively similar to the observed behavior in Drell-Yan and semi-inclusive deep-inelastic scattering interactions. The momentum widths are also studied as a function of center-of-mass energy by comparing to previous measurements at $sqrt{s}=510$ GeV. The nonperturbative jet widths also appear to increase with $sqrt{s}$ at a similar $x_T$, which is qualitatively consistent to similar measurements in Drell-Yan interactions. To quantify the magnitude of any transverse-momentum-dependent factorization breaking effects, calculations will need to be performed to compare to these measurements.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا