Do you want to publish a course? Click here

Sobolev $W_{p}^{1}(mathbb{R}^{n})$ spaces on $d$-thick closed subsets of $mathbb{R}^{n}$

143   0   0.0 ( 0 )
 Added by Alexander Tyulenev
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

Let $S subset mathbb{R}^{n}$ be a~closed set such that for some $d in [0,n]$ and $varepsilon > 0$ the~$d$-Hausdorff content $mathcal{H}^{d}_{infty}(S cap Q(x,r)) geq varepsilon r^{d}$ for all cubes~$Q(x,r)$ centered in~$x in S$ with side length $2r in (0,2]$. For every $p in (1,infty)$, denote by $W_{p}^{1}(mathbb{R}^{n})$ the classical Sobolev space on $mathbb{R}^{n}$. We give an~intrinsic characterization of the restriction $W_{p}^{1}(mathbb{R}^{n})|_{S}$ of the space $W_{p}^{1}(mathbb{R}^{n})$ to~the set $S$ provided that $p > max{1,n-d}$. Furthermore, we prove the existence of a bounded linear operator $operatorname{Ext}:W_{p}^{1}(mathbb{R}^{n})|_{S} to W_{p}^{1}(mathbb{R}^{n})$ such that $operatorname{Ext}$ is right inverse for the usual trace operator. In particular, for $p > n-1$ we characterize the trace space of the Sobolev space $W_{p}^{1}(mathbb{R}^{n})$ to the closure $overline{Omega}$ of an arbitrary open path-connected set~$Omega$. Our results extend those available for $p in (1,n]$ with much more stringent restrictions on~$S$.



rate research

Read More

192 - Alexander Tyulenev 2021
Let $S subset mathbb{R}^{n}$ be an arbitrary nonempty compact set such that the $d$-Hausdorff content $mathcal{H}^{d}_{infty}(S) > 0$ for some $d in (0,n]$. For each $p in (max{1,n-d},n]$ an almost sharp intrinsic description of the trace space $W_{p}^{1}(mathbb{R}^{n})|_{S}$ of the Sobolev space $W_{p}^{1}(mathbb{R}^{n})$ is given. Furthermore, for each $p in (max{1,n-d},n]$ and $varepsilon in (0, min{p-(n-d),p-1})$ new bounded linear extension operators from the trace space $W_{p}^{1}(mathbb{R}^{n})|_{S}$ into the space $W_{p-varepsilon}^{1}(mathbb{R}^{n})$ are constructed.
149 - Alexander Tyulenev 2020
We construct explicit examples of Frostman-type measures concentrated on arbitrary planar rectifiable curves of positive length. Based on such constructions we obtain for each $p in (1,infty)$ an exact description of the trace space of the first-order Sobolev space $W^{1}_{p}(mathbb{R}^{2})$ to an arbitrary planar rectifiable curve $Gamma subset mathbb{R}^{2}$ of positive length.
We characterize positivity preserving, translation invariant, linear operators in $L^p(mathbb{R}^n)^m$, $p in [1,infty)$, $m,n in mathbb{N}$.
Let $p(cdot): mathbb R^nto(0,infty)$ be a variable exponent function satisfying the globally log-Holder continuous condition. In this article, the authors first obtain a decomposition for any distribution of the variable weak Hardy space into good and bad parts and then prove the following real interpolation theorem between the variable Hardy space $H^{p(cdot)}(mathbb R^n)$ and the space $L^{infty}(mathbb R^n)$: begin{equation*} (H^{p(cdot)}(mathbb R^n),L^{infty}(mathbb R^n))_{theta,infty} =W!H^{p(cdot)/(1-theta)}(mathbb R^n),quad thetain(0,1), end{equation*} where $W!H^{p(cdot)/(1-theta)}(mathbb R^n)$ denotes the variable weak Hardy space. As an application, the variable weak Hardy space $W!H^{p(cdot)}(mathbb R^n)$ with $p_-:=mathopmathrm{ess,inf}_{xinrn}p(x)in(1,infty)$ is proved to coincide with the variable Lebesgue space $W!L^{p(cdot)}(mathbb R^n)$.
We report the results of the lattice simulation of the ${mathbb C} P^{N-1}$ sigma model on $S_{s}^{1}$(large) $times$ $S_{tau}^{1}$(small). We take a sufficiently large ratio of the circumferences to approximate the model on ${mathbb R} times S^1$. For periodic boundary condition imposed in the $S_{tau}^{1}$ direction, we show that the expectation value of the Polyakov loop undergoes a deconfinement crossover as the compactified circumference is decreased, where the peak of the associated susceptibility gets sharper for larger $N$. For ${mathbb Z}_{N}$ twisted boundary condition, we find that, even at relatively high $beta$ (small circumference), the regular $N$-sided polygon-shaped distributions of Polyakov loop leads to small expectation values of Polyakov loop, which implies unbroken ${mathbb Z}_{N}$ symmetry if sufficient statistics and large volumes are adopted. We also argue the existence of fractional instantons and bions by investigating the dependence of the Polyakov loop on $S_{s}^{1}$ direction, which causes transition between ${mathbb Z}_{N}$ vacua.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا