Do you want to publish a course? Click here

Interpolation between $H^{p(cdot)}(mathbb R^n)$ and $L^infty(mathbb R^n)$: Real Method

152   0   0.0 ( 0 )
 Added by Dachun Yang
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

Let $p(cdot): mathbb R^nto(0,infty)$ be a variable exponent function satisfying the globally log-Holder continuous condition. In this article, the authors first obtain a decomposition for any distribution of the variable weak Hardy space into good and bad parts and then prove the following real interpolation theorem between the variable Hardy space $H^{p(cdot)}(mathbb R^n)$ and the space $L^{infty}(mathbb R^n)$: begin{equation*} (H^{p(cdot)}(mathbb R^n),L^{infty}(mathbb R^n))_{theta,infty} =W!H^{p(cdot)/(1-theta)}(mathbb R^n),quad thetain(0,1), end{equation*} where $W!H^{p(cdot)/(1-theta)}(mathbb R^n)$ denotes the variable weak Hardy space. As an application, the variable weak Hardy space $W!H^{p(cdot)}(mathbb R^n)$ with $p_-:=mathopmathrm{ess,inf}_{xinrn}p(x)in(1,infty)$ is proved to coincide with the variable Lebesgue space $W!L^{p(cdot)}(mathbb R^n)$.



rate research

Read More

In this paper we consider the Hardy-Lorentz spaces $H^{p,q}(R^n)$, with $0<ple 1$, $0<qle infty$. We discuss the atomic decomposition of the elements in these spaces, their interpolation properties, and the behavior of singular integrals and other operators acting on them.
165 - Ciqiang Zhuo , Dachun Yang 2018
Let $p(cdot): mathbb R^nto(0,1]$ be a variable exponent function satisfying the globally log-Holder continuous condition and $L$ a one to one operator of type $omega$ in $L^2({mathbb R}^n)$, with $omegain[0,,pi/2)$, which has a bounded holomorphic functional calculus and satisfies the Davies-Gaffney estimates. In this article, the authors introduce the variable weak Hardy space $W!H_L^{p(cdot)}(mathbb R^n)$ associated with $L$ via the corresponding square function. Its molecular characterization is then established by means of the atomic decomposition of the variable weak tent space $W!T^{p(cdot)}(mathbb R^n)$ which is also obtained in this article. In particular, when $L$ is non-negative and self-adjoint, the authors obtain the atomic characterization of $W!H_L^{p(cdot)}(mathbb R^n)$. As an application of the molecular characterization, when $L$ is the second-order divergence form elliptic operator with complex bounded measurable coefficient, the authors prove that the associated Riesz transform $ abla L^{-1/2}$ is bounded from $W!H_L^{p(cdot)}(mathbb R^n)$ to the variable weak Hardy space $W!H^{p(cdot)}(mathbb R^n)$. Moreover, when $L$ is non-negative and self-adjoint with the kernels of ${e^{-tL}}_{t>0}$ satisfying the Gauss upper bound estimates, the atomic characterization of $W!H_L^{p(cdot)}(mathbb R^n)$ is further used to characterize the space via non-tangential maximal functions.
Wild sets in $mathbb{R}^n$ can be tamed through the use of various representations though sometimes this taming removes features considered important. Finding the wildest sets for which it is still true that the representations faithfully inform us about the original set is the focus of this rather playful, expository paper that we hope will stimulate interest in cubical coverings as well as the other two ideas we explore briefly: Jones $beta$ numbers and varifolds from geometric measure theory.
Let $S subset mathbb{R}^{n}$ be a~closed set such that for some $d in [0,n]$ and $varepsilon > 0$ the~$d$-Hausdorff content $mathcal{H}^{d}_{infty}(S cap Q(x,r)) geq varepsilon r^{d}$ for all cubes~$Q(x,r)$ centered in~$x in S$ with side length $2r in (0,2]$. For every $p in (1,infty)$, denote by $W_{p}^{1}(mathbb{R}^{n})$ the classical Sobolev space on $mathbb{R}^{n}$. We give an~intrinsic characterization of the restriction $W_{p}^{1}(mathbb{R}^{n})|_{S}$ of the space $W_{p}^{1}(mathbb{R}^{n})$ to~the set $S$ provided that $p > max{1,n-d}$. Furthermore, we prove the existence of a bounded linear operator $operatorname{Ext}:W_{p}^{1}(mathbb{R}^{n})|_{S} to W_{p}^{1}(mathbb{R}^{n})$ such that $operatorname{Ext}$ is right inverse for the usual trace operator. In particular, for $p > n-1$ we characterize the trace space of the Sobolev space $W_{p}^{1}(mathbb{R}^{n})$ to the closure $overline{Omega}$ of an arbitrary open path-connected set~$Omega$. Our results extend those available for $p in (1,n]$ with much more stringent restrictions on~$S$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا