No Arabic abstract
Spontaneous charge ordering occurring in correlated systems may be considered as a possible route to generate effective lattice structures with unconventional couplings. For this purpose we investigate the phase diagram of doped extended Hubbard models on two lattices: (i) the honeycomb lattice with on-site $U$ and nearest-neighbor $V$ Coulomb interactions at $3/4$ filling ($n=3/2$) and (ii) the triangular lattice with on-site $U$, nearest-neighbor $V$, and next-nearest-neighbor $V$ Coulomb interactions at $3/8$ filling ($n=3/4$). We consider various approaches including mean-field approximations, perturbation theory, and variational Monte Carlo. For the honeycomb case (i), charge order induces an effective triangular lattice at large values of $U/t$ and $V/t$, where $t$ is the nearest-neighbor hopping integral. The nearest-neighbor spin exchange interactions on this effective triangular lattice are antiferromagnetic in most of the phase diagram, while they become ferromagnetic when $U$ is much larger than $V$. At $U/tsim (V/t)^3$, ferromagnetic and antiferromagnetic exchange interactions nearly cancel out, leading to a system with four-spin ring-exchange interactions. On the other hand, for the triangular case (ii) at large $U$ and finite $V$, we find no charge order for small $V$, an effective kagome lattice for intermediate $V$, and one-dimensional charge order for large $V$. These results indicate that Coulomb interactions induce [case (i)] or enhance [case(ii)] emergent geometrical frustration of the spin degrees of freedom in the system, by forming charge order.
By using a state of art tensor network state method, we study the ground-state phase diagram of an extended Bose-Hubbard model on the square lattice with frustrated next-nearest neighboring tunneling. In the hardcore limit, tunneling frustration stabilizes a peculiar half supersolid (HSS) phase with one sublattice being superfluid and the other sublattice being Mott Insulator away from half filling. In the softcore case, the model shows very rich phase diagrams above half filling, including three different types of supersolid phases depending on the interaction parameters. The considered model provides a promising route to experimentally search for novel stable supersolid state induced by frustrated tunneling in below half filling region with dipolar atoms or molecules.
Structural phase transition accompanying with quadrupolar ordering in DyB4 with Shastry-Sutherland type geometrical frustration has been studied by X-ray diffraction. Previous study [D. Okuyama et al.: J. Phys. Soc. Jpn. 74 (2005) 2434.] using resonant X-ray scattering revealed short-range ordering of the Ozx-type quadrupolar moments and the c-plane component of the magnetic moments in addition to long-range ordering of the c-axis component of the magnetic moments. The present report focuses on the lattice distortion below the quadrupolar ordering temperature at TN2=12.7 K. The (0 0 l=integer) fundamental lattice reflection splits into four peaks along the h and k directions and the (h=even 0 0) reflection becomes broad along the l direction. This indicates that a structural transition from tetragonal to monoclinic takes place below TN2 together with the ordering of the quadrupolar moments.
We present a generalization of the recently proposed variational cluster perturbation theory to extended Hubbard models at half filling with repulsive nearest neighbor interaction. The method takes into account short-range correlations correctly by the exact diagonalisation of clusters of finite size, whereas long-range order beyond the size of the clusters is treated on a mean-field level. For one dimension, we show that quantum Monte Carlo and density-matrix renormalization-group results can be reproduced with very good accuracy. Moreover we apply the method to the two-dimensional extended Hubbard model on a square lattice. In contrast to the one-dimensional case, a first order phase transition between spin density wave phase and charge density wave phase is found as function of the nearest-neighbor interaction at onsite interactions U>=3t. The single-particle spectral function is calculated for both the one-dimensional and the two-dimensional system.
Although most quantum systems thermalize locally on short time scales independent of initial conditions, recent developments have shown this is not always the case. Lattice geometry and quantum mechanics can conspire to produce constrained quantum dynamics and associated glassy behavior, a phenomenon that falls outside the rubric of the eigenstate thermalization hypothesis. Constraints fragment the many-body Hilbert space due to which some states remain insulated from others and the system fails to attain thermal equilibrium. Such fragmentation is a hallmark of geometrically frustrated magnets with low-energy icelike manifolds exhibiting a broad range of relaxation times for different initial states. Focusing on the highly frustrated kagome lattice, we demonstrate these phenomena in the Balents-Fisher-Girvin Hamiltonian (easy-axis regime), and a three-coloring model (easy-plane regime), both with constrained Hilbert spaces. We study their level statistics and relaxation dynamics to develop a coherent picture of fragmentation in various limits of the XXZ model on the kagome lattice.
We expand the concept of frustration in Mott insulators and quantum spin liquids to metals with flat bands. We show that when inter-orbital hopping $t_2$ dominates over intra-orbital hopping $t_1$, in a multiband system with strong spin-orbit coupling $lambda$, electronic states with a narrow bandwidth $Wsim t_2^2/lambda$ are formed compared to a bandwidth of order $t_1$ for intra-orbital hopping. We demonstrate the evolution of the electronic structure, Berry phase distributions for time-reversal and inversion breaking cases, and their imprint on the optical absorption, in a tight binding model of $d$-orbital hopping on a honeycomb lattice. Going beyond quantum Hall effect and twisted bilayer graphene, we provide an alternative mechanism and a richer materials platform for achieving flat bands poised at the brink of instabilities toward novel correlated and fractionalized metallic phases.