No Arabic abstract
By using a state of art tensor network state method, we study the ground-state phase diagram of an extended Bose-Hubbard model on the square lattice with frustrated next-nearest neighboring tunneling. In the hardcore limit, tunneling frustration stabilizes a peculiar half supersolid (HSS) phase with one sublattice being superfluid and the other sublattice being Mott Insulator away from half filling. In the softcore case, the model shows very rich phase diagrams above half filling, including three different types of supersolid phases depending on the interaction parameters. The considered model provides a promising route to experimentally search for novel stable supersolid state induced by frustrated tunneling in below half filling region with dipolar atoms or molecules.
Jaynes-Cummings-Hubbard lattices provide unique properties for the study of correlated phases as they exhibit convenient state preparation and measurement, as well as in situ tuning of parameters. We show how to realize charge density and supersolid phases in Jaynes-Cummings-Hubbard lattices in the presence of long-range interactions. The long-range interactions are realized by the consideration of Rydberg states in coupled atom-cavity systems and the introduction of additional capacitive couplings in quantum-electrodynamics circuits. We demonstrate the emergence of supersolid and checkerboard solid phases, for calculations which take into account nearest neighbour couplings, through a mean-field decoupling.
Recently, it has become apparent that, when the interactions between polar molecules in optical lattices becomes strong, the conventional description using the extended Hubbard model has to be modified by additional terms, in particular a density-dependent tunneling term. We investigate here the influence of this term on the ground-state phase diagrams of the two dimensional extended Bose-Hubbard model. Using Quantum Monte Carlo simulations, we investigate the changes of the superfluid, supersolid, and phase-separated parameter regions in the phase diagram of the system. By studying the interplay of the density-dependent hopping with the usual on-site interaction U and nearest-neighbor repulsion V, we show that the ground-state phase diagrams differ significantly from the ones that are expected from the standard extended Bose-Hubbard model. However we find no indication of pair-superfluid behavior in this two dimensional square lattice study in contrast to the one-dimensional case.
The Haldane Insulator is a gapped phase characterized by an exotic non-local order parameter. The parameter regimes at which it might exist, and how it competes with alternate types of order, such as supersolid order, are still incompletely understood. Using the Stochastic Green Function (SGF) quantum Monte Carlo (QMC) and the Density Matrix Renormalization Group (DMRG), we study numerically the ground state phase diagram of the one-dimensional bosonic Hubbard model (BHM) with contact and near neighbor repulsive interactions. We show that, depending on the ratio of the near neighbor to contact interactions, this model exhibits charge density waves (CDW), superfluid (SF), supersolid (SS) and the recently identified Haldane insulating (HI) phases. We show that the HI exists only at the tip of the unit filling CDW lobe and that there is a stable SS phase over a very wide range of parameters.
In this paper, we study the dynamics of the Bose-Hubbard model with the nearest-neighbor repulsion by using time-dependent Gutzwiller methods. Near the unit filling, the phase diagram of the model contains density wave (DW), supersolid (SS) and superfluid (SF). The three phases are separated by two second-order phase transitions. We study slow-quench dynamics by varying the hopping parameter in the Hamiltonian as a function of time. In the phase transitions from the DW to SS and from the DW to SF, we focus on how the SF order forms and study scaling laws of the SF correlation length, vortex density, etc. The results are compared with the Kibble-Zurek scaling. On the other hand from the SF to DW, we study how the DW order evolves with generation of the domain walls and vortices. Measurement of first-order SF coherence reveals interesting behavior in the DW regime.
We investigate the competition between charge-density-wave (CDW) states and a Coulomb interaction-driven topological Mott insulator (TMI) in the honeycomb extended Hubbard model. For the spinful model with on-site ($U$) and next-nearest-neighbor ($V_2$) Coulomb interactions at half filling, we find two peculiar six-sublattice charge-density-wave insulating states by using variational Monte Carlo simulations as well as the Hartree-Fock approximation. We observe that conventional ordered states always win with respect to the TMI. The ground state is given in the large-$V_2$ region by a CDW characterized by a 220200 (001122) charge configuration for smaller (larger) $U$, where 0, 1, and 2 denote essentially empty, singly occupied, and doubly occupied sites. Within the 001122-type CDW phase, we find a magnetic transition driven by an emergent coupled-dimer antiferromagnet on an effective square lattice of singly occupied sites. Possible realizations of the found states are discussed.