Do you want to publish a course? Click here

Quadrupolar Order and Structural Phase Transition in DyB4 with Geometrical Frustration

130   0   0.0 ( 0 )
 Added by Daisuke Okuyama
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Structural phase transition accompanying with quadrupolar ordering in DyB4 with Shastry-Sutherland type geometrical frustration has been studied by X-ray diffraction. Previous study [D. Okuyama et al.: J. Phys. Soc. Jpn. 74 (2005) 2434.] using resonant X-ray scattering revealed short-range ordering of the Ozx-type quadrupolar moments and the c-plane component of the magnetic moments in addition to long-range ordering of the c-axis component of the magnetic moments. The present report focuses on the lattice distortion below the quadrupolar ordering temperature at TN2=12.7 K. The (0 0 l=integer) fundamental lattice reflection splits into four peaks along the h and k directions and the (h=even 0 0) reflection becomes broad along the l direction. This indicates that a structural transition from tetragonal to monoclinic takes place below TN2 together with the ordering of the quadrupolar moments.



rate research

Read More

The temperature dependence of charge order in Fe2OBO3 was investigated by resistivity and differential scanning calorimetry measurements, Mossbauer spectroscopy, and synchrotron x-ray scattering, revealing an intermediate phase between room temperature and 340 K, characterized by coexisting mobile and immobile carriers, and by incommensurate superstructure modulations with temperature-dependent propagation vector (1/2,0,tau). The incommensurate modulations arise from specific anti-phase boundaries with low energy cost due to geometrical charge frustration.
The origin of non-collinear magnetic order in UO$_{2}$ is studied by an ab initio dynamical-mean-field-theory framework in conjunction with a linear-response approach for evaluating inter-site superexchange interactions between U 5$f^{2}$ shells. The calculated quadrupole-quadruple superexchange interactions are found to unambiguously resolve the frustration of face-centered-cubic U sublattice toward stabilization of the experimentally observed non-collinear 3k-magnetic order. Therefore, the exotic 3k antiferromagnetic order in UO$_{2}$ can be accounted for by a purely electronic exchange mechanism acting in the undistorted cubic lattice structure. The quadrupolar short-range order above magnetic ordering temperature $T_N$ is found to qualitatively differ from the long-range order below $T_N$.
133 - N. Ni , S. Nandi , A. Kreyssig 2008
CaFe$_2$As$_2$ has been synthesized and found to form in the tetragonal, ThCr$_2$Si$_2$ structure with lattice parameters $a = 3.912(68) AA$ and $c = 11.667(45) AA$. Upon cooling through 170 K, CaFe$_2$As$_2$ undergoes a first order, structural phase transition to a low temperature, orthorhombic phase with a $2 - 3$ K range of hysteresis and coexistence. This transition is clearly evident in microscopic, thermodynamic and transport measurements. CaFe$_2$As$_2$ is the third member of the AFe$_2$As$_2$ (A = Ba, Sr, Ca) family to exhibit such a dramatic phase transition and is a promising candidate for studies of doping induced superconductivity.
An abrupt first-order metal-insulator transition (MIT) without structural phase transition is first observed by current-voltage measurements and micro-Raman scattering experiments, when a DC electric field is applied to a Mott insulator VO_2 based two-terminal device. An abrupt current jump is measured at a critical electric field. The Raman-shift frequency and the bandwidth of the most predominant Raman-active A_g mode, excited by the electric field, do not change through the abrupt MIT, while, they, excited by temperature, pronouncedly soften and damp (structural MIT), respectively. This structural MIT is found to occur secondarily.
Spontaneous charge ordering occurring in correlated systems may be considered as a possible route to generate effective lattice structures with unconventional couplings. For this purpose we investigate the phase diagram of doped extended Hubbard models on two lattices: (i) the honeycomb lattice with on-site $U$ and nearest-neighbor $V$ Coulomb interactions at $3/4$ filling ($n=3/2$) and (ii) the triangular lattice with on-site $U$, nearest-neighbor $V$, and next-nearest-neighbor $V$ Coulomb interactions at $3/8$ filling ($n=3/4$). We consider various approaches including mean-field approximations, perturbation theory, and variational Monte Carlo. For the honeycomb case (i), charge order induces an effective triangular lattice at large values of $U/t$ and $V/t$, where $t$ is the nearest-neighbor hopping integral. The nearest-neighbor spin exchange interactions on this effective triangular lattice are antiferromagnetic in most of the phase diagram, while they become ferromagnetic when $U$ is much larger than $V$. At $U/tsim (V/t)^3$, ferromagnetic and antiferromagnetic exchange interactions nearly cancel out, leading to a system with four-spin ring-exchange interactions. On the other hand, for the triangular case (ii) at large $U$ and finite $V$, we find no charge order for small $V$, an effective kagome lattice for intermediate $V$, and one-dimensional charge order for large $V$. These results indicate that Coulomb interactions induce [case (i)] or enhance [case(ii)] emergent geometrical frustration of the spin degrees of freedom in the system, by forming charge order.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا