No Arabic abstract
Let $K$ be an algebraically closed field of characteristic different from 2, $g$ a positive integer, $f(x)$ a degree $(2g+1)$ polynomial with coefficients in $K$ and without multiple roots, $C: y^2=f(x)$ the corresponding genus $g$ hyperelliptic curve over $K$ and $J$ the jacobian of $C$. We identify $C$ with the image of its canonical embedding into $J$ (the infinite point of $C$ goes to the zero point of $J$). For each point $P=(a,b)in C(K)$ there are $2^{2g}$ points $frac{1}{2}P in J(K)$. We describe explicitly the Mumford represesentations of all $frac{1}{2}P$. The rationality questions for $frac{1}{2}P$ are also discussed.
Let $K$ be an algebraically closed field of characteristic different from 2, $g$ a positive integer, $f(x)$ a degree $(2g+1)$ polynomial with coefficients in $K$ and without multiple roots, $C:y^2=f(x)$ the corresponding genus $g$ hyperelliptic curve over K, and $J$ the jacobian of $C$. We identify $C$ with the image of its canonical embedding into $J$ (the infinite point of $C$ goes to the identity element of $J$). It is well known that for each $mathfrak{b} in J(K)$ there are exactly $2^{2g}$ elements $mathfrak{a} in J(K)$ such that $2mathfrak{a}=mathfrak{b}$. M. Stoll constructed an algorithm that provides Mumford representations of all such $mathfrak{a}$, in terms of the Mumford representation of $mathfrak{b}$. The aim of this paper is to give explicit formulas for Mumford representations of all such $mathfrak{a}$, when $mathfrak{b}in J(K)$ is given by $P=(a,b) in C(K)subset J(K)$ in terms of coordinates $a,b$. We also prove that if $g>1$ then $C(K)$ does not contain torsion points with order between $3$ and $2g$.
Let $K$ be a field of characteristic different from $2$, $bar{K}$ its algebraic closure. Let $n ge 3$ be an odd prime such that $2$ is a primitive root modulo $n$. Let $f(x)$ and $h(x)$ be degree $n$ polynomials with coefficients in $K$ and without repeated roots. Let us consider genus $(n-1)/2$ hyperelliptic curves $C_f: y^2=f(x)$ and $C_h: y^2=h(x)$, and their jacobians $J(C_f)$ and $J(C_h)$, which are $(n-1)/2$-dimensional abelian varieties defined over $K$. Suppose that one of the polynomials is irreducible and the other reducible. We prove that if $J(C_f)$ and $J(C_h)$ are isogenous over $bar{K}$ then both jacobians are abelian varieties of CM type with multiplication by the field of $n$th roots of $1$.
We prove that the jacobian of a hyperelliptic curve $y^2=(x-t)h(x)$ has no nontrivial endomorphisms over an algebraic closure of the ground field $K$ of characteristic zero if $t in K$ and the Galois group of the polynomial $h(x)$ over $K$ is very big and $deg(h)$ is an even number >8. (The case of odd $deg(h)>3$ follows easily from previous results of the author.)
We discuss a non-computational elementary approach to a well-known criterion of divisibility by 2 in the group of rational points on an elliptic curve.
In this paper we study the Coleman-Oort conjecture for superelliptic curves, i.e., curves defined by affine equations $y^n=F(x)$ with $F$ a separable polynomial. We prove that up to isomorphism there are at most finitely many superelliptic curves of fixed genus $ggeq 8$ with CM Jacobians. The proof relies on the geometric structures of Shimura subvarieties in Siegel modular varieties and the stability properties of Higgs bundles associated to fibred surfaces.