Do you want to publish a course? Click here

Kilonova/Macronova Emission from Compact Binary Mergers

209   0   0.0 ( 0 )
 Added by Masaomi Tanaka
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We review current understanding of kilonova/macronova emission from compact binary mergers (mergers of two neutron stars or a neutron star and a black hole). Kilonova/macronova is optical and near-infrared emission powered by radioactive decays of r-process nuclei. Emission from the dynamical ejecta with ~0.01 Msun is likely to have a luminosity of ~10^{40}-10^{41} erg s^{-1} with a characteristic timescale of about 1 week. The spectral peak is located in red optical or near-infrared wavelengths. A subsequent accretion disk wind may provide an additional luminosity, or an earlier/bluer emission if it is not absorbed by the precedent dynamical ejecta. The detection of near-infrared excess in the afterglow of short GRB 130603B and possible optical excess in GRB 060614 supports the concept of the kilonova/macronova scenario. At 200 Mpc distance, a typical brightness of kilonova/macronova with 0.01 Msun ejecta is expected to be about 22 mag and the emission rapidly fades to >24 mag within ~10 days after the merger. Kilonova/macronova candidates can be distinguished from supernovae by (1) the faster time evolution, (2) fainter absolute magnitudes, and (3) redder colors. To effectively search for such objects, follow-up survey observations with multiple visits within <10 days and with multiple filters will be important. Since the high expansion velocity (v ~ 0.1-0.2c) is a robust outcome of compact binary mergers, the detection of smooth spectra will be the smoking gun to conclusively identify the GW source.



rate research

Read More

We present radiative transfer simulations for blue kilonovae hours after neutron star (NS) mergers by performing detailed opacity calculations for the first time. We calculate atomic structures and opacities of highly ionized elements (up to the tenth ionization) with atomic number Z = 20 - 56. We find that the bound-bound transitions of heavy elements are the dominant source of the opacities in the early phase (t < 1 day after the merger), and that the ions with a half-closed electron shell provide the highest contributions. The Planck mean opacity for lanthanide-free ejecta (with electron fraction of Ye = 0.30 - 0.40) can only reach around kappa ~ 0.5 - 1 cm^2 g^-1 at t = 0.1 day, whereas that increases up to kappa ~ 5 - 10 cm^2 g^-1 at t = 1 day. The spherical ejecta model with an ejecta mass of Mej = 0.05Msun gives the bolometric luminosity of ~ 2 x 10^42 erg s^-1 at t ~ 0.1 day. We confirm that the existing bolometric and multi-color data of GW170817 can be naturally explained by the purely radioactive model. The expected early UV signals reach 20.5 mag at t ~ 4.3 hours for sources even at 200 Mpc, which is detectable by the facilities such as Swift and the Ultraviolet Transient Astronomy Satellite (ULTRASAT). The early-phase luminosity is sensitive to the structure of the outer ejecta, as also pointed out by Kasen et al. (2017). Therefore, the early UV observations give strong constraints on the structure of the outer ejecta as well as the presence of a heating source besides r-process nuclei.
The advent of multi-messenger astronomy has allowed for new types of source searches by neutrino detectors. We present the results of the first search for 0.5 - 5 GeV astrophysical neutrinos emitted from all compact binary mergers, i.e., binary black hole, neutron star black, mass gap and binary neutron star mergers, detected by the LIGO and Virgo interferometers during their three first runs of observation. We use an innovative approach that lowers the energy threshold from ~10 GeV to ~0.5 GeV and searches for an excess of GeV-scale events during astrophysical transient events. No significant excess was found from the studied mergers, and there is currently no hint of a population of GeV neutrino emitters found in the IceCube data.
The first detection of a binary neutron star merger through gravitational waves and photons marked the dawn of multi-messenger astronomy with gravitational waves, and it greatly increased our insight in different fields of astrophysics and fundamental physics. However, many open questions on the physical process involved in a compact binary merger still remain and many of these processes concern plasma physics. With the second generation of gravitational wave interferometers approaching their design sensitivity, the new generation under design study, and new X-ray detectors under development, the high energy Universe will become more and more a unique laboratory for our understanding of plasma in extreme conditions. In this review, we discuss the main electromagnetic signals expected to follow the merger of two compact objects highlighting the main physical processes involved and some of the most important open problems in the field.
During a compact binary merger involving at least one neutron star, a small fraction of the gravitational energy could be liberated in such a way to accelerate a small fraction (~ 10^-6) of the neutron star mass in an isotropic or quasi-isotropic way. In presence of certain conditions, a pair-loaded fireball can form, which undergoes accelerated expansion reaching relativistic velocities. As in the standard fireball scenario, internal energy is partly transformed into kinetic energy. At the photospheric radius, the internal radiation can escape, giving rise to a pulse that lasts for a time equal to the delay time since the merger. The subsequent interaction with the interstellar medium can then convert part of the remaining kinetic energy back into radiation in a weak isotropic afterglow at all wavelengths. This scenario does not require the presence of a jet: the associated isotropic prompt and afterglow emission should be visible for all NS-NS and BH-NS mergers within 90 Mpc, independent of their inclination. The prompt emission is similar to that expected from an off-axis jet, either structured or much slower than usually assumed (Gamma ~ 10), or from the jet cocoon. The predicted afterglow emission properties can discriminate among these scenarios.
137 - E. Troja , G. Ryan , L. Piro 2018
The recent discovery of a faint gamma-ray burst (GRB) coincident with the gravitational wave (GW) event GW 170817 revealed the existence of a population of low-luminosity short duration gamma-ray transients produced by neutron star mergers in the nearby Universe. These events could be routinely detected by existing gamma-ray monitors, yet previous observations failed to identify them without the aid of GW triggers. Here we show that GRB150101B was an analogue of GRB170817A located at a cosmological distance. GRB 150101B was a faint short duration GRB characterized by a bright optical counterpart and a long-lived X-ray afterglow. These properties are unusual for standard short GRBs and are instead consistent with an explosion viewed off-axis: the optical light is produced by a luminous kilonova component, while the observed X-rays trace the GRB afterglow viewed at an angle of ~13 degrees. Our findings suggest that these properties could be common among future electromagnetic counterparts of GW sources.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا