Do you want to publish a course? Click here

Electromagnetic Counterparts of Compact Binary Mergers

147   0   0.0 ( 0 )
 Added by Stefano Ascenzi
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The first detection of a binary neutron star merger through gravitational waves and photons marked the dawn of multi-messenger astronomy with gravitational waves, and it greatly increased our insight in different fields of astrophysics and fundamental physics. However, many open questions on the physical process involved in a compact binary merger still remain and many of these processes concern plasma physics. With the second generation of gravitational wave interferometers approaching their design sensitivity, the new generation under design study, and new X-ray detectors under development, the high energy Universe will become more and more a unique laboratory for our understanding of plasma in extreme conditions. In this review, we discuss the main electromagnetic signals expected to follow the merger of two compact objects highlighting the main physical processes involved and some of the most important open problems in the field.



rate research

Read More

106 - Shu-Xu Yi , K.S. Cheng 2019
Multi-messenger astronomy combining Gravitational Wave (GW) and Electromagnetic Wave (EM) observation brings huge impact on physics, astrophysics and cosmology. However, the majority of sources to be detected with currently running ground-based GW observatories are binary black hole (BBH) mergers, which are expected disappointedly to have no EM counterparts. In this letter, we propose that if the BBH merger happens in a gaseous disk around a supermassive black hole, the merger can be accompanied by a transient radio flare alike a fast radio burst (FRB). We argue that the total mass and the effective spin derived from GW detection can be used to distinguish such a source from other channels of BBH mergers. If the prediction is confirmed with future observation, multi-messenger astronomy can be brought to a distance which is one order of magnitude farther than present. The mystery of the origin of FRBs can also be revealed partially.
The next two decades are expected to open the door to the first coincident detections of electromagnetic (EM) and gravitational wave (GW) signatures associated with massive black hole (MBH) binaries heading for coalescence. These detections will launch a new era of multimessenger astrophysics by expanding this growing field to the low-frequency GW regime and will provide unprecedented understanding of the evolution of MBHs and galaxies. They will also constitute fundamentally new probes of cosmology and would enable unique tests of gravity. The aim of this Living Review is to provide an introduction to this research topic by presenting a summary of key findings, physical processes and ideas pertaining to EM counterparts to MBH mergers as they are known at the time of this writing. We review current observational evidence for close MBH binaries, discuss relevant physical processes and timescales, and summarize the possible EM counterparts to GWs in the precursor, coalescence, and afterglow stages of a MBH merger. We also describe open questions and discuss future prospects in this dynamic and quick paced research area.
We propose a novel scenario for possible electromagnetic (EM) emission by compact binary mergers in the accretion disks of active galactic nuclei (AGNs). Nuclear star clusters in AGNs are a plausible formation site of compact-stellar binaries (CSBs) whose coalescences can be detected through gravitational waves (GWs). We investigate the accretion onto and outflows from CSBs embedded in AGN disks. We show that these outflows are likely to create outflow cavities in the AGN disks before the binaries merge, which makes EM or neutrino counterparts much less common than would otherwise be expected. We discuss the necessary conditions for detectable EM counterparts to mergers inside the outflow cavities. If the merger remnant black hole experiences a high recoil velocity and can enter the AGN disk, it can accrete gas with a super-Eddington rate, newly forming a cavity-like structure. This bubble can break out of the disk within a day to a week after the merger. Such breakout emission can be bright enough to be detectable by current soft X-ray instruments, such as Swift-XRT and Chandra.
We investigate the possible origin of extended emissions (EEs) of short gamma-ray bursts with an isotropic energy of ~ 10^(50-51) erg and a duration of a few 10 s to ~ 100 s, based on a compact binary (neutron star (NS)-NS or NS-black hole (BH)) merger scenario. We analyze the evolution of magnetized neutrino-dominated accretion disks of mass ~ 0.1 M_sun around BHs formed after the mergers, and estimate the power of relativistic outflows via the Blandford-Znajek (BZ) process. We show that a rotation energy of the BH up to > 10^52 erg can be extracted with an observed time scale of > 30 (1+z) s with a relatively small disk viscosity parameter of alpha < 0.01. Such a BZ power dissipates by clashing with non-relativistic pre-ejected matter of mass M ~ 10^-(2-4) M_sun, and forms a mildly relativistic fireball. We show that the dissipative photospheric emissions from such fireballs are likely in the soft X-ray band (1-10 keV) for M ~ 10^-2 M_sun possibly in NS-NS mergers, and in the BAT band (15-150 keV) for M ~ 10^-4 M_sun possibly in NS-BH mergers. In the former case, such soft EEs can provide a good chance of ~ 6 yr^-1 for simultaneous detections of the gravitational waves with a ~ 0.1 deg angular resolution by soft X-ray survey facilities like Wide-Field MAXI.
Long-lasting emission of short gamma-ray bursts (GRBs) is crucial to reveal the physical origin of the central engine as well as to detect electromagnetic (EM) counterparts to gravitational waves (GWs) from neutron star binary mergers. We investigate 65 X-ray light curves of short GRBs, which is six times more than previous studies, by combining both Swift/BAT and XRT data. The light curves are found to consist of two distinct components at $>5sigma$ with bimodal distributions of luminosity and duration, i.e., extended (with timescale $lesssim10^3$ s) and plateau emission (with timescale $gtrsim10^3$ s), which are likely the central engine activities but not afterglows. The extended emission has an isotropic energy comparable to the prompt emission, while the plateau emission has $sim0.01-1$ times of that energy. A half (50%) of our sample has both components, while the other half is consistent with having both components. This leads us to conjecture that almost all short GRBs have both the extended and plateau emission. The long-lasting emission can be explained by the jets from black holes with fallback ejecta, and could power macronovae (or kilonovae) like GRB 130603B and GRB 160821B. Based on the observed properties, we quantify the detectability of EM counterparts to GWs, including the plateau emission scattered to the off-axis angle, with CALET/HXM, INTEGRAL/SPI-ACS, Fermi/GBM, MAXI/GSC, Swift/BAT, XRT, future ISS-Lobster/WFI, Einstein Probe/WXT, and eROSITA.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا