No Arabic abstract
The advent of multi-messenger astronomy has allowed for new types of source searches by neutrino detectors. We present the results of the first search for 0.5 - 5 GeV astrophysical neutrinos emitted from all compact binary mergers, i.e., binary black hole, neutron star black, mass gap and binary neutron star mergers, detected by the LIGO and Virgo interferometers during their three first runs of observation. We use an innovative approach that lowers the energy threshold from ~10 GeV to ~0.5 GeV and searches for an excess of GeV-scale events during astrophysical transient events. No significant excess was found from the studied mergers, and there is currently no hint of a population of GeV neutrino emitters found in the IceCube data.
Solar flares convert magnetic energy into thermal and non-thermal plasma energy, the latter implying particle acceleration of charged particles such as protons. Protons are injected out of the coronal acceleration region and can interact with dense plasma in the lower solar atmosphere, producing mesons that subsequently decay into gamma rays and neutrinos at O(MeV-GeV) energies. We present the results of the first search for GeV neutrinos emitted during solar flares carried out with the IceCube Neutrino Observatory. While the experiment was originally designed to detect neutrinos with energies between 10 GeV and a few PeV, a new approach allowing for a O(GeV) energy threshold will be presented. The resulting limits allow us to constrain some of the theoretical estimates of the expected neutrino flux.
The past decade has welcomed the emergence of cosmic neutrinos as a new messenger to explore the most extreme environments of the universe. The discovery measurement of cosmic neutrinos, announced by IceCube in 2013, has opened a new window of observation that has already resulted in new fundamental information that holds the potential to answer key questions associated with the high-energy universe, including: what are the sources in the PeV sky and how do they drive particle acceleration; where are cosmic rays of extreme energies produced, and on which paths do they propagate through the universe; and are there signatures of new physics at TeV-PeV energies and above? The planned advancements in neutrino telescope arrays in the next decade, in conjunction with continued progress in broad multimessenger astrophysics, promise to elevate the cosmic neutrino field from the discovery to the precision era and to a survey of the sources in the neutrino sky. The planned detector upgrades to the IceCube Neutrino Observatory, culminating in IceCube-Gen2 (an envisaged $400M facility with anticipated operation in the next decade, described in this white paper) are the cornerstone that will drive the evolution of neutrino astrophysics measurements.
The IceCube Neutrino Observatory opened the window on neutrino astronomy by discovering high-energy astrophysical neutrinos in 2013 and identifying the first compelling astrophysical neutrino source, the blazar TXS0506+056, in 2017. In this talk, we will discuss the science reach and ongoing development of the IceCube-Gen2 facility---a planned extension to IceCube. IceCube-Gen2 will increase the rate of observed cosmic neutrinos by an order of magnitude, be able to detect five-times fainter neutrino sources, and extend the measurement of astrophysical neutrinos several orders of magnitude higher in energy. We will discuss the envisioned design of the instrument, which will include an enlarged in-ice optical array, a surface array for the study of cosmic-rays, and a shallow radio array to detect ultra-high energy (>100 PeV) neutrinos. we will also highlight ongoing efforts to develop and test new instrumentation for IceCube-Gen2.
RNO is the mid-scale discovery instrument designed to make the first observation of neutrinos from the cosmos at extreme energies, with sensitivity well beyond current instrument capabilities. This new observatory will be the largest ground-based neutrino telescope to date, enabling the measurement of neutrinos above $10^{16}$ eV, determining the nature of the astrophysical neutrino flux that has been measured by IceCube at higher energies, similarly extending the reach of multi-messenger astrophysics to the highest energies, and enabling investigations of fundamental physics at energies unreachable by particle accelerators on Earth.
Papers on neutrino oscillation and supernova searches submitted to the 33nd International Cosmic Ray Conference (Rio de Janeiro 2013) by the IceCube Collaboration.