No Arabic abstract
Bayes classifiers for functional data pose a challenge. This is because probability density functions do not exist for functional data. As a consequence, the classical Bayes classifier using density quotients needs to be modified. We propose to use density ratios of projections on a sequence of eigenfunctions that are common to the groups to be classified. The density ratios can then be factored into density ratios of individual functional principal components whence the classification problem is reduced to a sequence of nonparametric one-dimensional density estimates. This is an extension to functional data of some of the very earliest nonparametric Bayes classifiers that were based on simple density ratios in the one-dimensional case. By means of the factorization of the density quotients the curse of dimensionality that would otherwise severely affect Bayes classifiers for functional data can be avoided. We demonstrate that in the case of Gaussian functional data, the proposed functional Bayes classifier reduces to a functional version of the classical quadratic discriminant. A study of the asymptotic behavior of the proposed classifiers in the large sample limit shows that under certain conditions the misclassification rate converges to zero, a phenomenon that has been referred to as perfect classification. The proposed classifiers also perform favorably in finite sample applications, as we demonstrate in comparisons with other functional classifiers in simulations and various data applications, including wine spectral data, functional magnetic resonance imaging (fMRI) data for attention deficit hyperactivity disorder (ADHD) patients, and yeast gene expression data.
The test of homogeneity for normal mixtures has been conducted in diverse research areas, but constructing a theory of the test of homogeneity is challenging because the parameter set for the null hypothesis corresponds to singular points in the parameter space. In this paper, we examine this problem from a new perspective and offer a theory of hypothesis testing for homogeneity based on a variational Bayes framework. In the conventional theory, the constant order term of the free energy has remained unknown, however, we clarify its asymptotic behavior because it is necessary for constructing a hypothesis test. Numerical experiments shows the validity of our theoretical results.
We consider high-dimensional measurement errors with high-frequency data. Our focus is on recovering the covariance matrix of the random errors with optimality. In this problem, not all components of the random vector are observed at the same time and the measurement errors are latent variables, leading to major challenges besides high data dimensionality. We propose a new covariance matrix estimator in this context with appropriate localization and thresholding. By developing a new technical device integrating the high-frequency data feature with the conventional notion of $alpha$-mixing, our analysis successfully accommodates the challenging serial dependence in the measurement errors. Our theoretical analysis establishes the minimax optimal convergence rates associated with two commonly used loss functions. We then establish cases when the proposed localized estimator with thresholding achieves the minimax optimal convergence rates. Considering that the variances and covariances can be small in reality, we conduct a second-order theoretical analysis that further disentangles the dominating bias in the estimator. A bias-corrected estimator is then proposed to ensure its practical finite sample performance. We illustrate the promising empirical performance of the proposed estimator with extensive simulation studies and a real data analysis.
We consider nonparametric inference of finite dimensional, potentially non-pathwise differentiable target parameters. In a nonparametric model, some examples of such parameters that are always non pathwise differentiable target parameters include probability density functions at a point, or regression functions at a point. In causal inference, under appropriate causal assumptions, mean counterfactual outcomes can be pathwise differentiable or not, depending on the degree at which the positivity assumption holds. In this paper, given a potentially non-pathwise differentiable target parameter, we introduce a family of approximating parameters, that are pathwise differentiable. This family is indexed by a scalar. In kernel regression or density estimation for instance, a natural choice for such a family is obtained by kernel smoothing and is indexed by the smoothing level. For the counterfactual mean outcome, a possible approximating family is obtained through truncation of the propensity score, and the truncation level then plays the role of the index. We propose a method to data-adaptively select the index in the family, so as to optimize mean squared error. We prove an asymptotic normality result, which allows us to derive confidence intervals. Under some conditions, our estimator achieves an optimal mean squared error convergence rate. Confidence intervals are data-adaptive and have almost optimal width. A simulation study demonstrates the practical performance of our estimators for the inference of a causal dose-response curve at a given treatment dose.
Naive Bayes classifiers have proven to be useful in many prediction problems with complete training data. Here we consider the situation where a naive Bayes classifier is trained with data where the response is right censored. Such prediction problems are for instance encountered in profiling systems used at National Employment Agencies. In this paper we propose the maximum collective conditional likelihood estimator for the prediction and show that it is strongly consistent under the usual identifiability condition.
We develop a Nonparametric Empirical Bayes (NEB) framework for compound estimation in the discrete linear exponential family, which includes a wide class of discrete distributions frequently arising from modern big data applications. We propose to directly estimate the Bayes shrinkage factor in the generalized Robbins formula via solving a scalable convex program, which is carefully developed based on a RKHS representation of the Steins discrepancy measure. The new NEB estimation framework is flexible for incorporating various structural constraints into the data driven rule, and provides a unified approach to compound estimation with both regular and scaled squared error losses. We develop theory to show that the class of NEB estimators enjoys strong asymptotic properties. Comprehensive simulation studies as well as analyses of real data examples are carried out to demonstrate the superiority of the NEB estimator over competing methods.