Do you want to publish a course? Click here

DeepPicker: a Deep Learning Approach for Fully Automated Particle Picking in Cryo-EM

67   0   0.0 ( 0 )
 Added by Huichao Gong
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Particle picking is a time-consuming step in single-particle analysis and often requires significant interventions from users, which has become a bottleneck for future automated electron cryo-microscopy (cryo-EM). Here we report a deep learning framework, called DeepPicker, to address this problem and fill the current gaps toward a fully automated cryo-EM pipeline. DeepPicker employs a novel cross-molecule training strategy to capture common features of particles from previously-analyzed micrographs, and thus does not require any human intervention during particle picking. Tests on the recently-published cryo-EM data of three complexes have demonstrated that our deep learning based scheme can successfully accomplish the human-level particle picking process and identify a sufficient number of particles that are comparable to those manually by human experts. These results indicate that DeepPicker can provide a practically useful tool to significantly reduce the time and manual effort spent in single-particle analysis and thus greatly facilitate high-resolution cryo-EM structure determination.



rate research

Read More

Cryo-electron microscopy (cryoEM) is an increasingly popular method for protein structure determination. However, identifying a sufficient number of particles for analysis (often >100,000) can take months of manual effort. Current computational approaches are limited by high false positive rates and require significant ad-hoc post-processing, especially for unusually shaped particles. To address this shortcoming, we develop Topaz, an efficient and accurate particle picking pipeline using neural networks trained with few labeled particles by newly leveraging the remaining unlabeled particles through the framework of positive-unlabeled (PU) learning. Remarkably, despite using minimal labeled particles, Topaz allows us to improve reconstruction resolution by up to 0.15 {AA} over published particles on three public cryoEM datasets without any post-processing. Furthermore, we show that our novel generalized-expectation criteria approach to PU learning outperforms existing general PU learning approaches when applied to particle detection, especially for challenging datasets of non-globular proteins. We expect Topaz to be an essential component of cryoEM analysis.
Cryo-electron microscopy (cryo-EM) is a powerful technique for determining the structure of proteins and other macromolecular complexes at near-atomic resolution. In single particle cryo-EM, the central problem is to reconstruct the three-dimensional structure of a macromolecule from $10^{4-7}$ noisy and randomly oriented two-dimensional projections. However, the imaged protein complexes may exhibit structural variability, which complicates reconstruction and is typically addressed using discrete clustering approaches that fail to capture the full range of protein dynamics. Here, we introduce a novel method for cryo-EM reconstruction that extends naturally to modeling continuous generative factors of structural heterogeneity. This method encodes structures in Fourier space using coordinate-based deep neural networks, and trains these networks from unlabeled 2D cryo-EM images by combining exact inference over image orientation with variational inference for structural heterogeneity. We demonstrate that the proposed method, termed cryoDRGN, can perform ab initio reconstruction of 3D protein complexes from simulated and real 2D cryo-EM image data. To our knowledge, cryoDRGN is the first neural network-based approach for cryo-EM reconstruction and the first end-to-end method for directly reconstructing continuous ensembles of protein structures from cryo-EM images.
We propose a hybrid sequential deep learning model to predict the risk of AMD progression in non-exudative AMD eyes at multiple timepoints, starting from short-term progression (3-months) up to long-term progression (21-months). Proposed model combines radiomics and deep learning to handle challenges related to imperfect ratio of OCT scan dimension and training cohort size. We considered a retrospective clinical trial dataset that includes 671 fellow eyes with 13,954 dry AMD observations for training and validating the machine learning models on a 10-fold cross validation setting. The proposed RNN model achieved high accuracy (0.96 AUCROC) for the prediction of both short term and long-term AMD progression, and outperformed the traditional random forest model trained. High accuracy achieved by the RNN establishes the ability to identify AMD patients at risk of progressing to advanced AMD at an early stage which could have a high clinical impact as it allows for optimal clinical follow-up, with more frequent screening and potential earlier treatment for those patients at high risk.
Cryo-EM reconstruction algorithms seek to determine a molecules 3D density map from a series of noisy, unlabeled 2D projection images captured with an electron microscope. Although reconstruction algorithms typically model the 3D volume as a generic function parameterized as a voxel array or neural network, the underlying atomic structure of the protein of interest places well-defined physical constraints on the reconstructed structure. In this work, we exploit prior information provided by an atomic model to reconstruct distributions of 3D structures from a cryo-EM dataset. We propose Cryofold, a generative model for a continuous distribution of 3D volumes based on a coarse-grained model of the proteins atomic structure, with radial basis functions used to model atom locations and their physics-based constraints. Although the reconstruction objective is highly non-convex when formulated in terms of atomic coordinates (similar to the protein folding problem), we show that gradient descent-based methods can reconstruct a continuous distribution of atomic structures when initialized from a structure within the underlying distribution. This approach is a promising direction for integrating biophysical simulation, learned neural models, and experimental data for 3D protein structure determination.
Single-particle cryo-electron microscopy (cryo-EM) reconstructs the three-dimensional (3D) structure of bio-molecules from a large set of 2D projection images with random and unknown orientations. A crucial step in the single-particle cryo-EM pipeline is 3D refinement, which resolves a high-resolution 3D structure from an initial approximate volume by refining the estimation of the orientation of each projection. In this work, we propose a new approach that refines the projection angles on the continuum. We formulate the optimization problem over the density map and the orientations jointly. The density map is updated using the efficient alternating-direction method of multipliers, while the orientations are updated through a semi-coordinate-wise gradient descent for which we provide an explicit derivation of the gradient. Our method eliminates the requirement for a fine discretization of the orientation space and does away with the classical but computationally expensive template-matching step. Numerical results demonstrate the feasibility and performance of our approach compared to several baselines.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا