Do you want to publish a course? Click here

Some Insights into the Geometry and Training of Neural Networks

65   0   0.0 ( 0 )
 Added by Ewout van den Berg
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Neural networks have been successfully used for classification tasks in a rapidly growing number of practical applications. Despite their popularity and widespread use, there are still many aspects of training and classification that are not well understood. In this paper we aim to provide some new insights into training and classification by analyzing neural networks from a feature-space perspective. We review and explain the formation of decision regions and study some of their combinatorial aspects. We place a particular emphasis on the connections between the neural network weight and bias terms and properties of decision boundaries and other regions that exhibit varying levels of classification confidence. We show how the error backpropagates in these regions and emphasize the important role they have in the formation of gradients. These findings expose the connections between scaling of the weight parameters and the density of the training samples. This sheds more light on the vanishing gradient problem, explains the need for regularization, and suggests an approach for subsampling training data to improve performance.



rate research

Read More

Sparse neural networks are effective approaches to reduce the resource requirements for the deployment of deep neural networks. Recently, the concept of adaptive sparse connectivity, has emerged to allow training sparse neural networks from scratch by optimizing the sparse structure during training. However, comparing different sparse topologies and determining how sparse topologies evolve during training, especially for the situation in which the sparse structure optimization is involved, remain as challenging open questions. This comparison becomes increasingly complex as the number of possible topological comparisons increases exponentially with the size of networks. In this work, we introduce an approach to understand and compare sparse neural network topologies from the perspective of graph theory. We first propose Neural Network Sparse Topology Distance (NNSTD) to measure the distance between different sparse neural networks. Further, we demonstrate that sparse neural networks can outperform over-parameterized models in terms of performance, even without any further structure optimization. To the end, we also show that adaptive sparse connectivity can always unveil a plenitude of sparse sub-networks with very different topologies which outperform the dense model, by quantifying and comparing their topological evolutionary processes. The latter findings complement the Lottery Ticket Hypothesis by showing that there is a much more efficient and robust way to find winning tickets. Altogether, our results start enabling a better theoretical understanding of sparse neural networks, and demonstrate the utility of using graph theory to analyze them.
481 - Gerard Biau 2020
Generative Adversarial Networks (GANs) have been successful in producing outstanding results in areas as diverse as image, video, and text generation. Building on these successes, a large number of empirical studies have validated the benefits of the cousin approach called Wasserstein GANs (WGANs), which brings stabilization in the training process. In the present paper, we add a new stone to the edifice by proposing some theoretical advances in the properties of WGANs. First, we properly define the architecture of WGANs in the context of integral probability metrics parameterized by neural networks and highlight some of their basic mathematical features. We stress in particular interesting optimization properties arising from the use of a parametric 1-Lipschitz discriminator. Then, in a statistically-driven approach, we study the convergence of empirical WGANs as the sample size tends to infinity, and clarify the adversarial effects of the generator and the discriminator by underlining some trade-off properties. These features are finally illustrated with experiments using both synthetic and real-world datasets.
282 - Jianjie Lu , Kai-yu Tong 2019
Many image processing tasks involve image-to-image mapping, which can be addressed well by fully convolutional networks (FCN) without any heavy preprocessing. Although empirically designing and training FCNs can achieve satisfactory results, reasons for the improvement in performance are slightly ambiguous. Our study is to make progress in understanding their generalization abilities through visualizing the optimization landscapes. The visualization of objective functions is obtained by choosing a solution and projecting its vicinity onto a 3D space. We compare three FCN-based networks (two existing models and a new proposed in this paper for comparison) on multiple datasets. It has been observed in practice that the connections from the pre-pooled feature maps to the post-upsampled can achieve better results. We investigate the cause and provide experiments to shows that the skip-layer connections in FCN can promote flat optimization landscape, which is well known to generalize better. Additionally, we explore the relationship between the models generalization ability and loss surface under different batch sizes. Results show that large-batch training makes the model converge to sharp minimizers with chaotic vicinities while small-batch method leads the model to flat minimizers with smooth and nearly convex regions. Our work may contribute to insights and analysis for designing and training FCNs.
With the success of deep neural networks, Neural Architecture Search (NAS) as a way of automatic model design has attracted wide attention. As training every child model from scratch is very time-consuming, recent works leverage weight-sharing to speed up the model evaluation procedure. These approaches greatly reduce computation by maintaining a single copy of weights on the super-net and share the weights among every child model. However, weight-sharing has no theoretical guarantee and its impact has not been well studied before. In this paper, we conduct comprehensive experiments to reveal the impact of weight-sharing: (1) The best-performing models from different runs or even from consecutive epochs within the same run have significant variance; (2) Even with high variance, we can extract valuable information from training the super-net with shared weights; (3) The interference between child models is a main factor that induces high variance; (4) Properly reducing the degree of weight sharing could effectively reduce variance and improve performance.
133 - Liwen Zhang , Gregory Naitzat , 2018
We establish, for the first time, connections between feedforward neural networks with ReLU activation and tropical geometry --- we show that the family of such neural networks is equivalent to the family of tropical rational maps. Among other things, we deduce that feedforward ReLU neural networks with one hidden layer can be characterized by zonotopes, which serve as building blocks for deeper networks; we relate decision boundaries of such neural networks to tropical hypersurfaces, a major object of study in tropical geometry; and we prove that linear regions of such neural networks correspond to vertices of polytopes associated with tropical rational functions. An insight from our tropical formulation is that a deeper network is exponentially more expressive than a shallow network.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا