Do you want to publish a course? Click here

Tropical Geometry of Deep Neural Networks

134   0   0.0 ( 0 )
 Added by Lek-Heng Lim
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We establish, for the first time, connections between feedforward neural networks with ReLU activation and tropical geometry --- we show that the family of such neural networks is equivalent to the family of tropical rational maps. Among other things, we deduce that feedforward ReLU neural networks with one hidden layer can be characterized by zonotopes, which serve as building blocks for deeper networks; we relate decision boundaries of such neural networks to tropical hypersurfaces, a major object of study in tropical geometry; and we prove that linear regions of such neural networks correspond to vertices of polytopes associated with tropical rational functions. An insight from our tropical formulation is that a deeper network is exponentially more expressive than a shallow network.



rate research

Read More

This work tackles the problem of characterizing and understanding the decision boundaries of neural networks with piecewise linear non-linearity activations. We use tropical geometry, a new development in the area of algebraic geometry, to characterize the decision boundaries of a simple network of the form (Affine, ReLU, Affine). Our main finding is that the decision boundaries are a subset of a tropical hypersurface, which is intimately related to a polytope formed by the convex hull of two zonotopes. The generators of these zonotopes are functions of the network parameters. This geometric characterization provides new perspectives to three tasks. (i) We propose a new tropical perspective to the lottery ticket hypothesis, where we view the effect of different initializations on the tropical geometric representation of a networks decision boundaries. (ii) Moreover, we propose new tropical based optimization reformulations that directly influence the decision boundaries of the network for the task of network pruning. (iii) At last, we discuss the reformulation of the generation of adversarial attacks in a tropical sense. We demonstrate that one can construct adversaries in a new tropical setting by perturbing a specific set of decision boundaries by perturbing a set of parameters in the network.
Deep Convolutional Neural Networks (DCNNs) are currently the method of choice both for generative, as well as for discriminative learning in computer vision and machine learning. The success of DCNNs can be attributed to the careful selection of their building blocks (e.g., residual blocks, rectifiers, sophisticated normalization schemes, to mention but a few). In this paper, we propose $Pi$-Nets, a new class of function approximators based on polynomial expansions. $Pi$-Nets are polynomial neural networks, i.e., the output is a high-order polynomial of the input. The unknown parameters, which are naturally represented by high-order tensors, are estimated through a collective tensor factorization with factors sharing. We introduce three tensor decompositions that significantly reduce the number of parameters and show how they can be efficiently implemented by hierarchical neural networks. We empirically demonstrate that $Pi$-Nets are very expressive and they even produce good results without the use of non-linear activation functions in a large battery of tasks and signals, i.e., images, graphs, and audio. When used in conjunction with activation functions, $Pi$-Nets produce state-of-the-art results in three challenging tasks, i.e. image generation, face verification and 3D mesh representation learning. The source code is available at url{https://github.com/grigorisg9gr/polynomial_nets}.
We study the family of functions that are represented by a linear convolutional neural network (LCN). These functions form a semi-algebraic subset of the set of linear maps from input space to output space. In contrast, the families of functions represented by fully-connected linear networks form algebraic sets. We observe that the functions represented by LCNs can be identified with polynomials that admit certain factorizations, and we use this perspective to describe the impact of the networks architecture on the geometry of the resulting function space. We further study the optimization of an objective function over an LCN, analyzing critical points in function space and in parameter space, and describing dynamical invariants for gradient descent. Overall, our theory predicts that the optimized parameters of an LCN will often correspond to repeated filters across layers, or filters that can be decomposed as repeated filters. We also conduct numerical and symbolic experiments that illustrate our results and present an in-depth analysis of the landscape for small architectures.
Deep Convolutional Neural Networks (DCNNs) is currently the method of choice both for generative, as well as for discriminative learning in computer vision and machine learning. The success of DCNNs can be attributed to the careful selection of their building blocks (e.g., residual blocks, rectifiers, sophisticated normalization schemes, to mention but a few). In this paper, we propose $Pi$-Nets, a new class of DCNNs. $Pi$-Nets are polynomial neural networks, i.e., the output is a high-order polynomial of the input. $Pi$-Nets can be implemented using special kind of skip connections and their parameters can be represented via high-order tensors. We empirically demonstrate that $Pi$-Nets have better representation power than standard DCNNs and they even produce good results without the use of non-linear activation functions in a large battery of tasks and signals, i.e., images, graphs, and audio. When used in conjunction with activation functions, $Pi$-Nets produce state-of-the-art results in challenging tasks, such as image generation. Lastly, our framework elucidates why recent generative models, such as StyleGAN, improve upon their predecessors, e.g., ProGAN.
Two networks are equivalent if they produce the same output for any given input. In this paper, we study the possibility of transforming a deep neural network to another network with a different number of units or layers, which can be either equivalent, a local exact approximation, or a global linear approximation of the original network. On the practical side, we show that certain rectified linear units (ReLUs) can be safely removed from a network if they are always active or inactive for any valid input. If we only need an equivalent network for a smaller domain, then more units can be removed and some layers collapsed. On the theoretical side, we constructively show that for any feed-forward ReLU network, there exists a global linear approximation to a 2-hidden-layer shallow network with a fixed number of units. This result is a balance between the increasing number of units for arbitrary approximation with a single layer and the known upper bound of $lceil log(n_0+1)rceil +1$ layers for exact representation, where $n_0$ is the input dimension. While the transformed network may require an exponential number of units to capture the activation patterns of the original network, we show that it can be made substantially smaller by only accounting for the patterns that define linear regions. Based on experiments with ReLU networks on the MNIST dataset, we found that $l_1$-regularization and adversarial training reduces the number of linear regions significantly as the number of stable units increases due to weight sparsity. Therefore, we can also intentionally train ReLU networks to allow for effective loss-less compression and approximation.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا