Do you want to publish a course? Click here

Visualized Insights into the Optimization Landscape of Fully Convolutional Networks

283   0   0.0 ( 0 )
 Added by Quanshi Zhang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Many image processing tasks involve image-to-image mapping, which can be addressed well by fully convolutional networks (FCN) without any heavy preprocessing. Although empirically designing and training FCNs can achieve satisfactory results, reasons for the improvement in performance are slightly ambiguous. Our study is to make progress in understanding their generalization abilities through visualizing the optimization landscapes. The visualization of objective functions is obtained by choosing a solution and projecting its vicinity onto a 3D space. We compare three FCN-based networks (two existing models and a new proposed in this paper for comparison) on multiple datasets. It has been observed in practice that the connections from the pre-pooled feature maps to the post-upsampled can achieve better results. We investigate the cause and provide experiments to shows that the skip-layer connections in FCN can promote flat optimization landscape, which is well known to generalize better. Additionally, we explore the relationship between the models generalization ability and loss surface under different batch sizes. Results show that large-batch training makes the model converge to sharp minimizers with chaotic vicinities while small-batch method leads the model to flat minimizers with smooth and nearly convex regions. Our work may contribute to insights and analysis for designing and training FCNs.



rate research

Read More

Sparse neural networks are effective approaches to reduce the resource requirements for the deployment of deep neural networks. Recently, the concept of adaptive sparse connectivity, has emerged to allow training sparse neural networks from scratch by optimizing the sparse structure during training. However, comparing different sparse topologies and determining how sparse topologies evolve during training, especially for the situation in which the sparse structure optimization is involved, remain as challenging open questions. This comparison becomes increasingly complex as the number of possible topological comparisons increases exponentially with the size of networks. In this work, we introduce an approach to understand and compare sparse neural network topologies from the perspective of graph theory. We first propose Neural Network Sparse Topology Distance (NNSTD) to measure the distance between different sparse neural networks. Further, we demonstrate that sparse neural networks can outperform over-parameterized models in terms of performance, even without any further structure optimization. To the end, we also show that adaptive sparse connectivity can always unveil a plenitude of sparse sub-networks with very different topologies which outperform the dense model, by quantifying and comparing their topological evolutionary processes. The latter findings complement the Lottery Ticket Hypothesis by showing that there is a much more efficient and robust way to find winning tickets. Altogether, our results start enabling a better theoretical understanding of sparse neural networks, and demonstrate the utility of using graph theory to analyze them.
Convolutional neural networks (CNN) exhibit unmatched performance in a multitude of computer vision tasks. However, the advantage of using convolutional networks over fully-connected networks is not understood from a theoretical perspective. In this work, we show how convolutional networks can leverage locality in the data, and thus achieve a computational advantage over fully-connected networks. Specifically, we show a class of problems that can be efficiently solved using convolutional networks trained with gradient-descent, but at the same time is hard to learn using a polynomial-size fully-connected network.
481 - Gerard Biau 2020
Generative Adversarial Networks (GANs) have been successful in producing outstanding results in areas as diverse as image, video, and text generation. Building on these successes, a large number of empirical studies have validated the benefits of the cousin approach called Wasserstein GANs (WGANs), which brings stabilization in the training process. In the present paper, we add a new stone to the edifice by proposing some theoretical advances in the properties of WGANs. First, we properly define the architecture of WGANs in the context of integral probability metrics parameterized by neural networks and highlight some of their basic mathematical features. We stress in particular interesting optimization properties arising from the use of a parametric 1-Lipschitz discriminator. Then, in a statistically-driven approach, we study the convergence of empirical WGANs as the sample size tends to infinity, and clarify the adversarial effects of the generator and the discriminator by underlining some trade-off properties. These features are finally illustrated with experiments using both synthetic and real-world datasets.
64 - Ewout van den Berg 2016
Neural networks have been successfully used for classification tasks in a rapidly growing number of practical applications. Despite their popularity and widespread use, there are still many aspects of training and classification that are not well understood. In this paper we aim to provide some new insights into training and classification by analyzing neural networks from a feature-space perspective. We review and explain the formation of decision regions and study some of their combinatorial aspects. We place a particular emphasis on the connections between the neural network weight and bias terms and properties of decision boundaries and other regions that exhibit varying levels of classification confidence. We show how the error backpropagates in these regions and emphasize the important role they have in the formation of gradients. These findings expose the connections between scaling of the weight parameters and the density of the training samples. This sheds more light on the vanishing gradient problem, explains the need for regularization, and suggests an approach for subsampling training data to improve performance.
Understanding the structure of loss landscape of deep neural networks (DNNs)is obviously important. In this work, we prove an embedding principle that the loss landscape of a DNN contains all the critical points of all the narrower DNNs. More precisely, we propose a critical embedding such that any critical point, e.g., local or global minima, of a narrower DNN can be embedded to a critical point/hyperplane of the target DNN with higher degeneracy and preserving the DNN output function. The embedding structure of critical points is independent of loss function and training data, showing a stark difference from other nonconvex problems such as protein-folding. Empirically, we find that a wide DNN is often attracted by highly-degenerate critical points that are embedded from narrow DNNs. The embedding principle provides an explanation for the general easy optimization of wide DNNs and unravels a potential implicit low-complexity regularization during the training. Overall, our work provides a skeleton for the study of loss landscape of DNNs and its implication, by which a more exact and comprehensive understanding can be anticipated in the near

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا