Do you want to publish a course? Click here

Constraints on dark-matter properties from large-scale structure

117   0   0.0 ( 0 )
 Added by Ignacy Sawicki
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use large-scale cosmological observations to place constraints on the dark-matter pressure, sound speed and viscosity, and infer a limit on the mass of warm-dark-matter particles. Measurements of the cosmic microwave background (CMB) anisotropies constrain the equation of state and sound speed of the dark matter at last scattering at the per mille level. Since the redshifting of collisionless particles universally implies that these quantities scale like $a^{-2}$ absent shell crossing, we infer that today $w_{rm (DM)}< 10^{-10.0}$, $c_{rm s,(DM)}^2 < 10^{-10.7}$ and $c_{rm vis, (DM)}^{2} < 10^{-10.3}$ at the $99%$ confidence level. This very general bound can be translated to model-dependent constraints on dark-matter models: for warm dark matter these constraints imply $m> 70$ eV, assuming it decoupled while relativistic around the same time as the neutrinos; for a cold relic, we show that $m>100$ eV. We separately constrain the properties of the DM fluid on linear scales at late times, and find upper bounds $c_{rm s, (DM)}^2<10^{-5.9}$, $c_{rm vis, (DM)}^{2} < 10^{-5.7}$, with no detection of non-dust properties for the DM.



rate research

Read More

Cosmological perturbations of sufficiently long wavelength admit a fluid dynamic description. We consider modes with wavevectors below a scale $k_m$ for which the dynamics is only mildly non-linear. The leading effect of modes above that scale can be accounted for by effective non-equilibrium viscosity and pressure terms. For mildly non-linear scales, these mainly arise from momentum transport within the ideal and cold but inhomogeneous fluid, while momentum transport due to more microscopic degrees of freedom is suppressed. As a consequence, concrete expressions with no free parameters, except the matching scale $k_m$, can be derived from matching evolution equations to standard cosmological perturbation theory. Two-loop calculations of the matter power spectrum in the viscous theory lead to excellent agreement with $N$-body simulations up to scales $k=0.2 , h/$Mpc. The convergence properties in the ultraviolet are better than for standard perturbation theory and the results are robust with respect to variations of the matching scale.
Bursts of particle production during inflation provide a well-motivated mechanism for creating bump like features in the primordial power spectrum. Current data constrains these features to be less than about 5% the size of the featureless primordial power spectrum at wavenumbers of about 0.1 h Mpc^{-1}. We forecast that the Planck cosmic microwave background experiment will be able to strengthen this constraint to the 0.5% level. We also predict that adding data from a square kilometer array (SKA) galaxy redshift survey would improve the constraint to about the 0.1% level. For features at larger wave-numbers, Planck will be limited by Silk damping and foregrounds. While, SKA will be limited by non-linear effects. We forecast for a Cosmic Inflation Probe (CIP) galaxy redshift survey, similar constraints can be achieved up to about a wavenumber of 1 h Mpc^{-1}.
Consistency between cosmological data sets is essential for ongoing and future cosmological analyses. We first investigate the questions of stability and applicability of some moment-based inconsistency measures to multiple data sets. We show that the recently introduced index of inconsistency (IOI) is numerically stable while it can be applied to multiple data sets. We use an illustrative construction of constraints as well as an example with real data sets (i.e. WMAP versus Planck) to show some limitations of the application of the Karhunen-Loeve decomposition to discordance measures. Second, we perform various consistency analyzes using IOI between multiple current data sets while textit{working with the entire common parameter spaces}. We find current Large-Scale-Structure (LSS) data sets (Planck CMB lensing, DES lensing-clustering and SDSS RSD) all to be consistent with one another. This is found to be not the case for Planck temperature (TT) versus polarization (TE,EE) data, where moderate inconsistencies are present. Noteworthy, we find a strong inconsistency between joint LSS probes and Planck with IOI=5.27, and a moderate tension between DES and Planck with IOI=3.14. Next, using the IOI metric, we compare the Hubble constant from five independent probes. We confirm previous strong tensions between local measurement (SH0ES) and Planck as well as between H0LiCOW and Planck, but also find new strong tensions between SH0ES measurement and the joint LSS probes with IOI=6.73 (i.e. 3.7-$sigma$ in 1D) as well as between joint LSS and combined probes SH0ES+H0LiCOW with IOI=8.59 (i.e. 4.1-$sigma$ in 1D). Whether due to systematic effects in the data sets or problems with the underlying model, sources of these old and new tensions need to be identified and dealt with.
An axion-like field comprising $sim 10%$ of the energy density of the universe near matter-radiation equality is a candidate to resolve the Hubble tension; this is the early dark energy (EDE) model. However, as shown in Hill et al. (2020), the model fails to simultaneously resolve the Hubble tension and maintain a good fit to both cosmic microwave background (CMB) and large-scale structure (LSS) data. Here, we use redshift-space galaxy clustering data to sharpen constraints on the EDE model. We perform the first EDE analysis using the full-shape power spectrum likelihood from the Baryon Oscillation Spectroscopic Survey (BOSS), based on the effective field theory (EFT) of LSS. The inclusion of this likelihood in the EDE analysis yields a $25%$ tighter error bar on $H_0$ compared to primary CMB data alone, yielding $H_0 = 68.54^{+0.52}_{-0.95}$ km/s/Mpc ($68%$ CL). In addition, we constrain the maximum fractional energy density contribution of the EDE to $f_{rm EDE} < 0.072$ ($95%$ CL). We explicitly demonstrate that the EFT BOSS likelihood yields much stronger constraints on EDE than the standard BOSS likelihood. Including further information from photometric LSS surveys,the constraints narrow by an additional $20%$, yielding $H_0 = 68.73^{+0.42}_{-0.69}$ km/s/Mpc ($68%$ CL) and $f_{rm EDE}<0.053$ ($95%$ CL). These bounds are obtained without including local-universe $H_0$ data, which is in strong tension with the CMB and LSS, even in the EDE model. We also refute claims that MCMC analyses of EDE that omit SH0ES from the combined dataset yield misleading posteriors. Finally, we demonstrate that upcoming Euclid/DESI-like spectroscopic galaxy surveys can greatly improve the EDE constraints. We conclude that current data preclude the EDE model as a resolution of the Hubble tension, and that future LSS surveys can close the remaining parameter space of this model.
219 - Rupert A.C. Croft 2013
The recent measurement of the gravitational redshifts of galaxies in galaxy clusters by Wojtak et al. has opened a new observational window on dark matter and modified gravity. By stacking clusters this determination effectively used the line of sight distortion of the cross-correlation function of massive galaxies and lower mass galaxies to estimate the gravitational redshift profile of clusters out to 4 Mpc/h. Here we use a halo model of clustering to predict the distortion due to gravitational redshifts of the cross-correlation function on scales from 1 - 100 Mpc/h. We compare our predictions to simulations and use the simulations to make mock catalogues relevant to current and future galaxy redshift surveys. Without formulating an optimal estimator, we find that the full BOSS survey should be able to detect gravitational redshifts from large-scale structure at the ~4 sigma level. Upcoming redshift surveys will greatly increase the number of galaxies useable in such studies and the BigBOSS and Euclid experiments should be capable of measurements with precision at the few percent level. As has been recently pointed out by McDonald, Kaiser and Zhao et al, other interesting effects including relativistic beaming and transverse Doppler shift can add additional asymmetric distortions to the correlation function. While these contributions are subdominant to the gravitational redshift on large scales, they represent additional opportunities to probe gravitational physics and indicate that many qualitatively new measurements should soon be possible using large redshift surveys.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا