Do you want to publish a course? Click here

Gravitational redshifts from large-scale structure

219   0   0.0 ( 0 )
 Added by Rupert Croft
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The recent measurement of the gravitational redshifts of galaxies in galaxy clusters by Wojtak et al. has opened a new observational window on dark matter and modified gravity. By stacking clusters this determination effectively used the line of sight distortion of the cross-correlation function of massive galaxies and lower mass galaxies to estimate the gravitational redshift profile of clusters out to 4 Mpc/h. Here we use a halo model of clustering to predict the distortion due to gravitational redshifts of the cross-correlation function on scales from 1 - 100 Mpc/h. We compare our predictions to simulations and use the simulations to make mock catalogues relevant to current and future galaxy redshift surveys. Without formulating an optimal estimator, we find that the full BOSS survey should be able to detect gravitational redshifts from large-scale structure at the ~4 sigma level. Upcoming redshift surveys will greatly increase the number of galaxies useable in such studies and the BigBOSS and Euclid experiments should be capable of measurements with precision at the few percent level. As has been recently pointed out by McDonald, Kaiser and Zhao et al, other interesting effects including relativistic beaming and transverse Doppler shift can add additional asymmetric distortions to the correlation function. While these contributions are subdominant to the gravitational redshift on large scales, they represent additional opportunities to probe gravitational physics and indicate that many qualitatively new measurements should soon be possible using large redshift surveys.



rate research

Read More

We use large-scale cosmological observations to place constraints on the dark-matter pressure, sound speed and viscosity, and infer a limit on the mass of warm-dark-matter particles. Measurements of the cosmic microwave background (CMB) anisotropies constrain the equation of state and sound speed of the dark matter at last scattering at the per mille level. Since the redshifting of collisionless particles universally implies that these quantities scale like $a^{-2}$ absent shell crossing, we infer that today $w_{rm (DM)}< 10^{-10.0}$, $c_{rm s,(DM)}^2 < 10^{-10.7}$ and $c_{rm vis, (DM)}^{2} < 10^{-10.3}$ at the $99%$ confidence level. This very general bound can be translated to model-dependent constraints on dark-matter models: for warm dark matter these constraints imply $m> 70$ eV, assuming it decoupled while relativistic around the same time as the neutrinos; for a cold relic, we show that $m>100$ eV. We separately constrain the properties of the DM fluid on linear scales at late times, and find upper bounds $c_{rm s, (DM)}^2<10^{-5.9}$, $c_{rm vis, (DM)}^{2} < 10^{-5.7}$, with no detection of non-dust properties for the DM.
We provide a detailed treatment and comparison of the weak lensing effects due to large-scale structure (LSS), or scalar density perturbations and those due to gravitational waves(GW) or tensor perturbations, on the temperature and polarization power spectra of the Cosmic Microwave Background (CMB). We carry out the analysis both in real space by using the correlation function method, as well as in the spherical harmonic space. We find an intriguing similarity between the lensing kernels associated with LSS lensing and GW lensing. It is found that the lensing kernels only differ in relative negative signs and their form is very reminiscent of even and odd parity bipolar spherical harmonic coefficients. Through a numerical study of these lensing kernels, we establish that lensing due to GW is more efficient at distorting the CMB spectra as compared to LSS lensing, particularly for the polarization power spectra. Finally we argue that the CMB B-mode power spectra measurements can be used to place interesting constraints on GW energy densities.
Third generation gravitational-wave (GW) detectors are expected to detect a large number of binary black holes (BBHs) to large redshifts, opening up an independent probe of the large scale structure using their clustering. This probe will be complementary to the probes using galaxy clustering -- GW events could be observed up to very large redshifts ($z sim 10$) although the source localization will be much poorer at large distances ($sim$ tens of square degrees). We explore the possibility of probing the large scale structure from the spatial distribution of the observed BBH population, using their two-point (auto)correlation function. We find that we can estimate the bias factor of population of BBH (up to $z sim 1$) with a few years of observations with these detectors. Our method relies solely on the source-location posteriors obtained the GW events and does not require any information from electromagnetic observations. This will help in identifying the type of galaxies that host the BBH population, thus shedding light on their origins.
102 - Tessa Baker , Ian Harrison 2020
The first multi-messenger gravitational wave event has had a transformative effect on the space of modified gravity models. In this paper we study the enhanced tests of gravity that are possible with a future set of gravitational wave standard siren events. We perform MCMC constraint forecasts for parameters in Horndeski scalar-tensor theories. In particular, we focus on the complementarity of gravitational waves with electromagnetic large-scale structure data from galaxy surveys. We find that the addition of fifty low redshift ($z lesssim 0.2$) standard sirens from the advanced LIGO network offers only a modest improvement (a factor 1.1 -- 1.3, where 1.0 is no improvement) over existing constraints from electromagnetic observations of large-scale structures. In contrast, high redshift (up to $z sim 10$) standard sirens from the future LISA satellite will improve constraints on the time evolution of the Planck mass in Horndeski theories by a factor $sim 5$. By simulating different scenarios, we find this improvement to be robust to marginalisation over unknown merger inclination angles and to variation between three plausible models for the merger source population.
The goal of this short report is to summarise some key results based on our previous works on model independent tests of gravity at large scales in the Universe, their connection with the properties of gravitational waves, and the implications of the recent measurement of the speed of tensors for the phenomenology of general families of gravity models for dark energy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا