Do you want to publish a course? Click here

Smoothed Hierarchical Dirichlet Process: A Non-Parametric Approach to Constraint Measures

68   0   0.0 ( 0 )
 Added by Cheng Luo
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Time-varying mixture densities occur in many scenarios, for example, the distributions of keywords that appear in publications may evolve from year to year, video frame features associated with multiple targets may evolve in a sequence. Any models that realistically cater to this phenomenon must exhibit two important properties: the underlying mixture densities must have an unknown number of mixtures, and there must be some smoothness constraints in place for the adjacent mixture densities. The traditional Hierarchical Dirichlet Process (HDP) may be suited to the first property, but certainly not the second. This is due to how each random measure in the lower hierarchies is sampled independent of each other and hence does not facilitate any temporal correlations. To overcome such shortcomings, we proposed a new Smoothed Hierarchical Dirichlet Process (sHDP). The key novelty of this model is that we place a temporal constraint amongst the nearby discrete measures ${G_j}$ in the form of symmetric Kullback-Leibler (KL) Divergence with a fixed bound $B$. Although the constraint we place only involves a single scalar value, it nonetheless allows for flexibility in the corresponding successive measures. Remarkably, it also led us to infer the model within the stick-breaking process where the traditional Beta distribution used in stick-breaking is now replaced by a new constraint calculated from $B$. We present the inference algorithm and elaborate on its solutions. Our experiment using NIPS keywords has shown the desirable effect of the model.



rate research

Read More

Using movement primitive libraries is an effective means to enable robots to solve more complex tasks. In order to build these movement libraries, current algorithms require a prior segmentation of the demonstration trajectories. A promising approach is to model the trajectory as being generated by a set of Switching Linear Dynamical Systems and inferring a meaningful segmentation by inspecting the transition points characterized by the switching dynamics. With respect to the learning, a nonparametric Bayesian approach is employed utilizing a Gibbs sampler.
We present a probabilistic model for unsupervised alignment of high-dimensional time-warped sequences based on the Dirichlet Process Mixture Model (DPMM). We follow the approach introduced in (Kazlauskaite, 2018) of simultaneously representing each data sequence as a composition of a true underlying function and a time-warping, both of which are modelled using Gaussian processes (GPs) (Rasmussen, 2005), and aligning the underlying functions using an unsupervised alignment method. In (Kazlauskaite, 2018) the alignment is performed using the GP latent variable model (GP-LVM) (Lawrence, 2005) as a model of sequences, while our main contribution is extending this approach to using DPMM, which allows us to align the sequences temporally and cluster them at the same time. We show that the DPMM achieves competitive results in comparison to the GP-LVM on synthetic and real-world data sets, and discuss the different properties of the estimated underlying functions and the time-warps favoured by these models.
The parsimonious Gaussian mixture models, which exploit an eigenvalue decomposition of the group covariance matrices of the Gaussian mixture, have shown their success in particular in cluster analysis. Their estimation is in general performed by maximum likelihood estimation and has also been considered from a parametric Bayesian prospective. We propose new Dirichlet Process Parsimonious mixtures (DPPM) which represent a Bayesian nonparametric formulation of these parsimonious Gaussian mixture models. The proposed DPPM models are Bayesian nonparametric parsimonious mixture models that allow to simultaneously infer the model parameters, the optimal number of mixture components and the optimal parsimonious mixture structure from the data. We develop a Gibbs sampling technique for maximum a posteriori (MAP) estimation of the developed DPMM models and provide a Bayesian model selection framework by using Bayes factors. We apply them to cluster simulated data and real data sets, and compare them to the standard parsimonious mixture models. The obtained results highlight the effectiveness of the proposed nonparametric parsimonious mixture models as a good nonparametric alternative for the parametric parsimonious models.
We present two new non-parametric methods for quantifying galaxy morphology: the relative distribution of the galaxy pixel flux values (the Gini coefficient or G) and the second-order moment of the brightest 20% of the galaxys flux (M20). We test the robustness of G and M20 to decreasing signal-to-noise and spatial resolution, and find that both measures are reliable to within 10% at average signal-to-noise per pixel greater than 3 and resolutions better than 1000 pc and 500 pc, respectively. We have measured G and M20, as well as concentration (C), asymmetry (A), and clumpiness (S) in the rest-frame near-ultraviolet/optical wavelengths for 150 bright local normal Hubble type galaxies (E-Sd) galaxies and 104 0.05 < z < 0.25 ultra-luminous infrared galaxies (ULIRGs).We find that most local galaxies follow a tight sequence in G-M20-C, where early-types have high G and C and low M20 and late-type spirals have lower G and C and higher M20. The majority of ULIRGs lie above the normal galaxy G-M20 sequence, due to their high G and M20 values. Their high Gini coefficients arise from very bright nuclei, while the high second-order moments are produced by multiple nuclei and bright tidal tails. All of these features are signatures of recent and on-going mergers and interactions. We also find that in combination with A and S, G is more effective than C at distinguishing ULIRGs from the normal Hubble-types. Finally, we measure the morphologies of 45 1.7 < z < 3.8 galaxies from HST NICMOS observations of the Hubble Deep Field North. We find that many of the z $sim$ 2 galaxies possess G and A higher than expected from degraded images of local elliptical and spiral galaxies, and have morphologies more like low-redshift single nucleus ULIRGs.
We develop a sequential low-complexity inference procedure for Dirichlet process mixtures of Gaussians for online clustering and parameter estimation when the number of clusters are unknown a-priori. We present an easily computable, closed form parametric expression for the conditional likelihood, in which hyperparameters are recursively updated as a function of the streaming data assuming conjugate priors. Motivated by large-sample asymptotics, we propose a novel adaptive low-complexity design for the Dirichlet process concentration parameter and show that the number of classes grow at most at a logarithmic rate. We further prove that in the large-sample limit, the conditional likelihood and data predictive distribution become asymptotically Gaussian. We demonstrate through experiments on synthetic and real data sets that our approach is superior to other online state-of-the-art methods.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا